Files
Aerofoil/GpApp/HouseIO.cpp

3843 lines
90 KiB
C++
Raw Blame History

//============================================================================
//----------------------------------------------------------------------------
// HouseIO.c
//----------------------------------------------------------------------------
//============================================================================
#include "BitmapImage.h"
#include "DialogManager.h"
#include "Externs.h"
#include "Environ.h"
#include "FileManager.h"
#include "GpIOStream.h"
#include "House.h"
#include "IGpLogDriver.h"
#include "IGpSystemServices.h"
#include "ObjectEdit.h"
#include "RectUtils.h"
#include "ResourceManager.h"
#include "PLDialogs.h"
#include "PLDrivers.h"
#include "PLMovies.h"
#include "PLResources.h"
#include "PLStringCompare.h"
#include "PLPasStr.h"
#include "CombinedTimestamp.h"
#include "DeflateCodec.h"
#include "MacFileInfo.h"
#include "GpIOStream.h"
#include "GpVector.h"
#include "MacBinary2.h"
#include "QDPictOpcodes.h"
#include "QDPixMap.h"
#include "PLStandardColors.h"
#include "ZipFile.h"
#define kSaveChangesAlert 1002
#define kSaveChanges 1
#define kDiscardChanges 2
void OpenHouseMovie (void);
void CloseHouseMovie (void);
AnimationPlayer theMovie;
Rect movieRect;
PortabilityLayer::IResourceArchive *houseResFork;
short wasHouseVersion;
Boolean houseOpen, fileDirty;
Boolean changeLockStateOfHouse, saveHouseLocked, houseIsReadOnly;
Boolean hasMovie, tvInRoom;
PortabilityLayer::CompositeFile *houseCFile;
extern VFileSpec *theHousesSpecs;
extern short thisHouseIndex, tvWithMovieNumber;
extern short numberRooms, housesFound;
extern Boolean noRoomAtAll, quitting, wardBitSet;
extern Boolean phoneBitSet, bannerStarCountOn;
bool ParseAndConvertSoundChecked(const THandle<void> &handle, void const*& outDataContents, size_t &outDataSize);
//============================================================== Functions
//-------------------------------------------------------------- OpenHouseMovie
void OpenHouseMovie (void)
{
#ifdef COMPILEQT
VFileSpec theSpec;
Handle spaceSaver;
if (thisMac.hasQT)
{
theSpec = theHousesSpecs[thisHouseIndex];
PasStringConcat(theSpec.m_name, PSTR(".mov"));
AnimationPackage *anim = AnimationPackage::Create();
if (!anim)
return;
PLError_t theErr = anim->Load(theSpec.m_dir, theSpec.m_name);
if (theErr != PLErrors::kNone)
{
anim->Destroy();
if (theErr != PLErrors::kFileNotFound)
YellowAlert(kYellowQTMovieNotLoaded, theErr);
return;
}
movieRect = (*anim->GetFrame(0))->GetRect();
hasMovie = true;
theMovie.SetPackage(anim);
AnimationManager::GetInstance()->RegisterPlayer(&theMovie);
}
#endif
}
//-------------------------------------------------------------- CloseHouseMovie
void CloseHouseMovie (void)
{
#ifdef COMPILEQT
if ((thisMac.hasQT) && (hasMovie))
{
AnimationManager::GetInstance()->RemovePlayer(&theMovie);
theMovie.m_animPackage->Destroy();
theMovie.m_animPackage = nullptr;
}
#endif
hasMovie = false;
}
//-------------------------------------------------------------- OpenHouse
// Opens a house (whatever current selection is). Returns true if all went well.
Boolean OpenHouse (Boolean read)
{
PLError_t theErr;
if (houseOpen)
{
if (!CloseHouse())
return(false);
}
if ((housesFound < 1) || (thisHouseIndex == -1))
return(false);
#ifdef COMPILEDEMO
if (!StrCmp::EqualCaseInsensitive(theHousesSpecs[thisHouseIndex].name, "\pDemo House"))
return (false);
#endif
houseCFile = PortabilityLayer::FileManager::GetInstance()->OpenCompositeFile(theHousesSpecs[thisHouseIndex].m_dir, theHousesSpecs[thisHouseIndex].m_name);
if (!houseCFile)
return (false);
houseIsReadOnly = houseCFile->IsDataReadOnly();
GpIOStream *houseStream = nil;
theErr = houseCFile->OpenData(PortabilityLayer::EFilePermission_Any, GpFileCreationDispositions::kCreateOrOpen, houseStream);
if (!CheckFileError(theErr, thisHouseName))
{
houseCFile->Close();
houseCFile = nil;
return (false);
}
houseOpen = true;
OpenHouseResFork();
if (hasMovie)
CloseHouseMovie();
tvInRoom = false;
tvWithMovieNumber = -1;
OpenHouseMovie();
if (read)
{
Boolean readOK = ReadHouse(houseStream, theHousesSpecs[thisHouseIndex].m_dir != PortabilityLayer::VirtualDirectories::kGameData);
houseStream->Close();
if (!readOK)
CloseHouse();
return readOK;
}
houseStream->Close();
return (true);
}
//-------------------------------------------------------------- OpenSpecificHouse
// Opens the specific house passed in.
#ifndef COMPILEDEMO
Boolean OpenSpecificHouse (const VFileSpec &specs)
{
short i;
Boolean itOpened;
if ((housesFound < 1) || (thisHouseIndex == -1))
return (false);
itOpened = true;
for (i = 0; i < housesFound; i++)
{
if ((theHousesSpecs[i].m_dir == specs.m_dir) &&
(StrCmp::EqualCaseInsensitive(theHousesSpecs[i].m_name, specs.m_name)))
{
thisHouseIndex = i;
PasStringCopy(theHousesSpecs[thisHouseIndex].m_name, thisHouseName);
if (!OpenHouse(true))
itOpened = false;
break;
}
}
return (itOpened);
}
#endif
//-------------------------------------------------------------- ReadHouse
// With a house open, this function reads in the actual bits of data<74>
// into memory.
void ByteSwapPoint(Point *point)
{
PortabilityLayer::ByteSwap::BigInt16(point->h);
PortabilityLayer::ByteSwap::BigInt16(point->v);
}
void ByteSwapRect(Rect *rect)
{
PortabilityLayer::ByteSwap::BigInt16(rect->top);
PortabilityLayer::ByteSwap::BigInt16(rect->left);
PortabilityLayer::ByteSwap::BigInt16(rect->bottom);
PortabilityLayer::ByteSwap::BigInt16(rect->right);
}
template<size_t TSize>
void SanitizePascalStr(uint8_t(&chars)[TSize])
{
const size_t maxLength = TSize - 1;
size_t strLength = chars[0];
if (strLength > maxLength)
{
strLength = maxLength;
chars[0] = static_cast<uint8_t>(maxLength);
}
for (size_t i = 1 + strLength; i < TSize; i++)
chars[i] = 0;
}
void ByteSwapScores(scoresType *scores)
{
SanitizePascalStr(scores->banner);
for (int i = 0; i < kMaxScores; i++)
SanitizePascalStr(scores->names[i]);
for (int i = 0; i < kMaxScores; i++)
PortabilityLayer::ByteSwap::BigInt32(scores->scores[i]);
for (int i = 0; i < kMaxScores; i++)
PortabilityLayer::ByteSwap::BigUInt32(scores->timeStamps[i]);
for (int i = 0; i < kMaxScores; i++)
PortabilityLayer::ByteSwap::BigInt16(scores->levels[i]);
}
void ByteSwapSavedGame(gameType *game)
{
PortabilityLayer::ByteSwap::BigInt16(game->version);
PortabilityLayer::ByteSwap::BigInt16(game->wasStarsLeft);
PortabilityLayer::ByteSwap::BigUInt32(game->timeStamp);
ByteSwapPoint(&game->where);
PortabilityLayer::ByteSwap::BigInt32(game->score);
PortabilityLayer::ByteSwap::BigInt32(game->unusedLong);
PortabilityLayer::ByteSwap::BigInt32(game->unusedLong2);
PortabilityLayer::ByteSwap::BigInt16(game->energy);
PortabilityLayer::ByteSwap::BigInt16(game->bands);
PortabilityLayer::ByteSwap::BigInt16(game->roomNumber);
PortabilityLayer::ByteSwap::BigInt16(game->gliderState);
PortabilityLayer::ByteSwap::BigInt16(game->numGliders);
PortabilityLayer::ByteSwap::BigInt16(game->foil);
PortabilityLayer::ByteSwap::BigInt16(game->unusedShort);
}
void ByteSwapBlower(blowerType *blower)
{
ByteSwapPoint(&blower->topLeft);
PortabilityLayer::ByteSwap::BigInt16(blower->distance);
}
void ByteSwapFurniture(furnitureType *furniture)
{
ByteSwapRect(&furniture->bounds);
PortabilityLayer::ByteSwap::BigInt16(furniture->pict);
}
void ByteSwapBonus(bonusType *bonus)
{
ByteSwapPoint(&bonus->topLeft);
PortabilityLayer::ByteSwap::BigInt16(bonus->length);
PortabilityLayer::ByteSwap::BigInt16(bonus->points);
}
void ByteSwapTransport(transportType *transport)
{
ByteSwapPoint(&transport->topLeft);
PortabilityLayer::ByteSwap::BigInt16(transport->tall);
PortabilityLayer::ByteSwap::BigInt16(transport->where);
}
void ByteSwapSwitch(switchType *sw)
{
ByteSwapPoint(&sw->topLeft);
PortabilityLayer::ByteSwap::BigInt16(sw->delay);
PortabilityLayer::ByteSwap::BigInt16(sw->where);
}
void ByteSwapLight(lightType *light)
{
ByteSwapPoint(&light->topLeft);
PortabilityLayer::ByteSwap::BigInt16(light->length);
}
void ByteSwapAppliance(applianceType *appliance)
{
ByteSwapPoint(&appliance->topLeft);
PortabilityLayer::ByteSwap::BigInt16(appliance->height);
}
void ByteSwapEnemy(enemyType *enemy)
{
ByteSwapPoint(&enemy->topLeft);
PortabilityLayer::ByteSwap::BigInt16(enemy->length);
}
void ByteSwapClutter(clutterType *clutter)
{
ByteSwapRect(&clutter->bounds);
PortabilityLayer::ByteSwap::BigInt16(clutter->pict);
}
void ByteSwapObject(objectType *obj, bool isSwappedAfter)
{
int16_t objWhat = 0;
if (isSwappedAfter)
objWhat = obj->what;
PortabilityLayer::ByteSwap::BigInt16(obj->what);
if (!isSwappedAfter)
objWhat = obj->what;
switch (objWhat)
{
case kFloorVent:
case kCeilingVent:
case kFloorBlower:
case kCeilingBlower:
case kSewerGrate:
case kLeftFan:
case kRightFan:
case kTaper:
case kCandle:
case kStubby:
case kTiki:
case kBBQ:
case kInvisBlower:
case kGrecoVent:
case kSewerBlower:
case kLiftArea:
ByteSwapBlower(&obj->data.a);
break;
case kTable:
case kShelf:
case kCabinet:
case kFilingCabinet:
case kWasteBasket:
case kMilkCrate:
case kCounter:
case kDresser:
case kDeckTable:
case kStool:
case kTrunk:
case kInvisObstacle:
case kManhole:
case kBooks:
case kInvisBounce:
ByteSwapFurniture(&obj->data.b);
break;
case kRedClock:
case kBlueClock:
case kYellowClock:
case kCuckoo:
case kPaper:
case kBattery:
case kBands:
case kGreaseRt:
case kGreaseLf:
case kFoil:
case kInvisBonus:
case kStar:
case kSparkle:
case kHelium:
case kSlider:
ByteSwapBonus(&obj->data.c);
break;
case kUpStairs:
case kDownStairs:
case kMailboxLf:
case kMailboxRt:
case kFloorTrans:
case kCeilingTrans:
case kDoorInLf:
case kDoorInRt:
case kDoorExRt:
case kDoorExLf:
case kWindowInLf:
case kWindowInRt:
case kWindowExRt:
case kWindowExLf:
case kInvisTrans:
case kDeluxeTrans:
ByteSwapTransport(&obj->data.d);
break;
case kLightSwitch:
case kMachineSwitch:
case kThermostat:
case kPowerSwitch:
case kKnifeSwitch:
case kInvisSwitch:
case kTrigger:
case kLgTrigger:
case kSoundTrigger:
ByteSwapSwitch(&obj->data.e);
break;
case kCeilingLight:
case kLightBulb:
case kTableLamp:
case kHipLamp:
case kDecoLamp:
case kFlourescent:
case kTrackLight:
case kInvisLight:
ByteSwapLight(&obj->data.f);
break;
case kShredder:
case kToaster:
case kMacPlus:
case kGuitar:
case kTV:
case kCoffee:
case kOutlet:
case kVCR:
case kStereo:
case kMicrowave:
case kCinderBlock:
case kFlowerBox:
case kCDs:
case kCustomPict:
ByteSwapAppliance(&obj->data.g);
break;
case kBalloon:
case kCopterLf:
case kCopterRt:
case kDartLf:
case kDartRt:
case kBall:
case kDrip:
case kFish:
case kCobweb:
ByteSwapEnemy(&obj->data.h);
break;
case kOzma:
case kMirror:
case kMousehole:
case kFireplace:
case kFlower:
case kWallWindow:
case kBear:
case kCalendar:
case kVase1:
case kVase2:
case kBulletin:
case kCloud:
case kFaucet:
case kRug:
case kChimes:
ByteSwapClutter(&obj->data.i);
break;
default:
break;
};
}
void ByteSwapRoom(roomType *room, bool isSwappedAfter)
{
SanitizePascalStr(room->name);
PortabilityLayer::ByteSwap::BigInt16(room->bounds);
PortabilityLayer::ByteSwap::BigInt16(room->background);
for (int i = 0; i < kNumTiles; i++)
PortabilityLayer::ByteSwap::BigInt16(room->tiles[i]);
PortabilityLayer::ByteSwap::BigInt16(room->floor);
PortabilityLayer::ByteSwap::BigInt16(room->suite);
PortabilityLayer::ByteSwap::BigInt16(room->openings);
PortabilityLayer::ByteSwap::BigInt16(room->numObjects);
for (int i = 0; i < kMaxRoomObs; i++)
ByteSwapObject(room->objects + i, isSwappedAfter);
}
bool ByteSwapHouse(housePtr house, size_t sizeInBytes, bool isSwappedAfter)
{
size_t nRooms = 0;
if (isSwappedAfter)
nRooms = house->nRooms;
PortabilityLayer::ByteSwap::BigInt16(house->version);
PortabilityLayer::ByteSwap::BigInt16(house->unusedShort);
PortabilityLayer::ByteSwap::BigInt32(house->timeStamp);
PortabilityLayer::ByteSwap::BigInt32(house->flags);
ByteSwapPoint(&house->initial);
SanitizePascalStr(house->banner);
SanitizePascalStr(house->trailer);
ByteSwapScores(&house->highScores);
ByteSwapSavedGame(&house->savedGame_Unused);
PortabilityLayer::ByteSwap::BigInt16(house->firstRoom);
PortabilityLayer::ByteSwap::BigInt16(house->nRooms);
if (!isSwappedAfter)
nRooms = house->nRooms;
const size_t roomDataSize = sizeInBytes - houseType::kBinaryDataSize;
if (nRooms < 0 || roomDataSize / sizeof(roomType) < nRooms)
return false;
for (size_t i = 0; i < nRooms; i++)
ByteSwapRoom(house->rooms + i, isSwappedAfter);
house->padding = 0;
return true;
}
static bool FailCheck(bool value)
{
return value;
}
static bool SucceedCheck(bool value)
{
return value;
}
static bool LCheck(bool value)
{
if (!value)
return FailCheck(value);
return value;
}
static bool RCheck(bool value)
{
if (value)
return SucceedCheck(value);
return value;
}
template<size_t TSize>
bool LegalizePascalStr(uint8_t(&chars)[TSize], bool &anyRepairs)
{
const size_t maxLength = TSize - 1;
if (chars[0] > maxLength)
{
chars[0] = static_cast<uint8_t>(maxLength);
anyRepairs = RCheck(true);
return true;
}
return true;
}
static void LegalizeBoolean(Boolean &b)
{
if (b < 0 || b > 1)
b = 1;
}
static bool LegalizeScores(scoresType *scores, bool &anyRepairs)
{
if (!LegalizePascalStr(scores->banner, anyRepairs))
return LCheck(false);
for (int i = 0; i < kMaxScores; i++)
if (!LegalizePascalStr(scores->names[i], anyRepairs))
return LCheck(false);
return true;
}
static bool LegalizeRoomLayout(houseType *house, size_t roomNum, bool &anyRepairs)
{
roomType *room = house->rooms + roomNum;
if (room->suite == kRoomIsEmpty)
return true;
if (room->suite < 0 || room->suite >= kMaxNumRoomsH)
{
room->suite = kRoomIsEmpty;
anyRepairs = RCheck(true);
return true;
}
if (room->floor > (kMaxNumRoomsV - kNumUndergroundFloors) || room->floor <= -kNumUndergroundFloors)
{
room->suite = kRoomIsEmpty;
anyRepairs = RCheck(true);
return true;
}
for (size_t ori = 0; ori < roomNum; ori++)
{
const roomType *otherRoom = house->rooms + ori;
if (otherRoom->floor == room->floor && otherRoom->suite == room->suite)
{
room->suite = kRoomIsEmpty;
anyRepairs = RCheck(true);
return true;
}
}
return true;
}
static void LegalizeTopLeft(Point &topLeft, bool &anyRepairs)
{
if (topLeft.h < 0)
{
anyRepairs = RCheck(true);
topLeft.h = 0;
}
else if (topLeft.h >= kRoomWide)
{
anyRepairs = RCheck(true);
topLeft.h = kRoomWide - 1;
}
if (topLeft.v < 0)
{
anyRepairs = RCheck(true);
topLeft.v = 0;
}
else if (topLeft.v >= kTileHigh)
{
anyRepairs = RCheck(true);
topLeft.v = kTileHigh - 1;
}
}
template<class TCondA, class TCondB, class TSet, class TSetTo>
void LegalizeExpect(const TCondA &condA, const TCondB &condB, TSet &set, const TSetTo &setTo, bool &anyRepairs)
{
if (condA == condB && set != setTo)
{
set = setTo;
anyRepairs = RCheck(true);
}
}
static Boolean ForceRectInRoomRect(Rect &rect)
{
Rect roomRect;
QSetRect(&roomRect, 0, 0, kRoomWide, kTileHigh);
return ForceRectInRect(&rect, &roomRect);
}
static bool LegalizeBlower(houseType *house, size_t roomNum, size_t objectNum, bool &anyRepairs)
{
roomType *room = house->rooms + roomNum;
objectType *obj = room->objects + objectNum;
blowerType *blower = &obj->data.a;
LegalizeBoolean(blower->initial);
LegalizeBoolean(blower->state);
int direction = -1;
for (int i = 0; i < 4; i++)
{
if (blower->vector & (1 << i))
{
if (direction >= 0)
anyRepairs = RCheck(true);
else
direction = i;
}
}
static const int kDirectionUp = 0;
static const int kDirectionRight = 1;
static const int kDirectionDown = 2;
static const int kDirectionLeft = 3;
if (direction < 0 || direction > 3)
direction = kDirectionUp;
LegalizeTopLeft(blower->topLeft, anyRepairs);
switch (obj->what)
{
case kFloorVent:
case kFloorBlower:
case kSewerGrate:
case kTaper:
case kCandle:
case kStubby:
case kTiki:
case kBBQ:
case kGrecoVent:
case kSewerBlower:
if (direction != kDirectionUp)
direction = kDirectionUp;
break;
case kCeilingVent:
case kCeilingBlower:
if (direction != kDirectionDown)
direction = kDirectionDown;
break;
case kRightFan:
if (direction != kDirectionRight)
direction = kDirectionRight;
break;
case kLeftFan:
if (direction != kDirectionLeft)
direction = kDirectionLeft;
break;
case kInvisBlower:
case kLiftArea:
break;
default:
return LCheck(false);
}
LegalizeExpect(obj->what, kFloorVent, blower->topLeft.v, kFloorVentTop, anyRepairs);
LegalizeExpect(obj->what, kFloorBlower, blower->topLeft.v, kFloorBlowerTop, anyRepairs);
LegalizeExpect(obj->what, kSewerGrate, blower->topLeft.v, kSewerGrateTop, anyRepairs);
LegalizeExpect(obj->what, kCeilingVent, blower->topLeft.v, kCeilingVentTop, anyRepairs);
LegalizeExpect(obj->what, kCeilingBlower, blower->topLeft.v, kCeilingBlowerTop, anyRepairs);
if (blower->vector != (1 << direction))
{
blower->vector = static_cast<Byte>(1 << direction);
// Unfortunately there's a lot of invalid directional data with fans, but because of how the code works, it has no effect
//anyRepairs = RCheck(true);
}
if (blower->distance < 0)
{
blower->distance = 0;
anyRepairs = RCheck(true);
}
if (obj->what == kLiftArea)
{
int maxWidth = kRoomWide - blower->topLeft.h;
int maxHeight = kTileHigh - blower->topLeft.v;
if (blower->distance > maxWidth)
{
blower->distance = maxWidth;
anyRepairs = RCheck(true);
}
if (blower->tall * 2 > maxHeight)
{
blower->tall = static_cast<Byte>(maxHeight / 2);
anyRepairs = RCheck(true);
}
return true;
}
Rect positionedRect = srcRects[obj->what];
ZeroRectCorner(&positionedRect);
OffsetRect(&positionedRect, blower->topLeft.h, blower->topLeft.v);
const Rect basePositionedRect = positionedRect;
if (ForceRectInRoomRect(positionedRect))
{
anyRepairs = RCheck(true);
blower->topLeft.h = positionedRect.left;
blower->topLeft.v = positionedRect.top;
}
int maxDistance = 0;
switch (direction)
{
case kDirectionUp:
{
int highestAllowed = BlowerTypeHasUpperLimit(obj->what) ? kUpwardVentMinY : 0;
maxDistance = blower->topLeft.v - highestAllowed;
}
break;
case kDirectionRight:
maxDistance = kRoomWide - positionedRect.right;
break;
case kDirectionDown:
maxDistance = kTileHigh - positionedRect.bottom;
break;
case kDirectionLeft:
maxDistance = positionedRect.left;
break;
default:
assert(false);
return LCheck(false);
}
if (blower->distance > maxDistance)
{
blower->distance = maxDistance;
anyRepairs = RCheck(true);
}
return true;
}
static bool LegalizeFurniture(houseType *house, size_t roomNum, size_t objectNum, bool &anyRepairs)
{
roomType *room = house->rooms + roomNum;
objectType *obj = room->objects + objectNum;
furnitureType *furniture = &obj->data.b;
bool isVertConstrained = false;
bool isHorizConstrained = false;
bool isBottomConstrained = false;
int bottomConstraint = 0;
switch (obj->what)
{
default:
assert(false);
return LCheck(false);
case kTable:
case kShelf:
case kDeckTable:
isVertConstrained = true;
break;
case kBooks:
case kFilingCabinet:
case kWasteBasket:
case kMilkCrate:
case kStool:
case kTrunk:
isVertConstrained = true;
isHorizConstrained = true;
break;
case kCabinet:
case kInvisObstacle:
case kInvisBounce:
// No constraints
break;
case kCounter:
isBottomConstrained = true;
bottomConstraint = kCounterBottom;
break;
case kDresser:
isBottomConstrained = true;
bottomConstraint = kDresserBottom;
break;
case kManhole:
isVertConstrained = true;
isHorizConstrained = true;
isBottomConstrained = true;
bottomConstraint = kManholeSits;
break;
};
const Rect baseRect = srcRects[obj->what];
if (NormalizeRect(&furniture->bounds))
anyRepairs = RCheck(true);
Point topLeft = Point::Create(furniture->bounds.left, furniture->bounds.top);
LegalizeTopLeft(topLeft, anyRepairs);
if (obj->what == kManhole)
{
if (((topLeft.h - 3) % 64) != 0)
{
topLeft.h = (((topLeft.h + 29) / 64) * 64) + 3;
anyRepairs = RCheck(true);
}
}
uint16_t width = furniture->bounds.Width();
uint16_t height = furniture->bounds.Height();
if (width > kRoomWide)
{
width = kRoomWide;
anyRepairs = RCheck(true);
}
if (height > kTileHigh)
{
height = kTileHigh;
anyRepairs = RCheck(true);
}
LegalizeExpect(isVertConstrained, true, height, baseRect.Height(), anyRepairs);
LegalizeExpect(isHorizConstrained, true, width, baseRect.Width(), anyRepairs);
furniture->bounds.left = topLeft.h;
furniture->bounds.top = topLeft.v;
furniture->bounds.bottom = topLeft.v + static_cast<int16_t>(height);
furniture->bounds.right = topLeft.h + static_cast<int16_t>(width);
if (ForceRectInRoomRect(furniture->bounds))
anyRepairs = RCheck(true);
if (isBottomConstrained && furniture->bounds.bottom != bottomConstraint)
{
if (furniture->bounds.top > bottomConstraint)
furniture->bounds.top = bottomConstraint;
furniture->bounds.bottom = bottomConstraint;
anyRepairs = RCheck(true);
}
return true;
}
static bool LegalizeBonus(houseType *house, size_t roomNum, size_t objectNum, bool &anyRepairs)
{
roomType *room = house->rooms + roomNum;
objectType *obj = room->objects + objectNum;
bonusType *bonus = &obj->data.c;
LegalizeBoolean(bonus->state);
LegalizeBoolean(bonus->initial);
if (obj->what == kInvisBonus && bonus->points < 0)
{
anyRepairs = RCheck(true);
bonus->points = 0;
}
LegalizeTopLeft(bonus->topLeft, anyRepairs);
switch (obj->what)
{
default:
return LCheck(false);
case kRedClock:
case kBlueClock:
case kYellowClock:
case kCuckoo:
case kPaper:
case kBattery:
case kBands:
case kGreaseRt:
case kGreaseLf:
case kFoil:
case kInvisBonus:
case kStar:
case kSparkle:
case kHelium:
case kSlider:
break;
};
Rect objRect = srcRects[obj->what];
ZeroRectCorner(&objRect);
if (obj->what == kSlider)
{
if (bonus->length < 0)
{
anyRepairs = RCheck(true);
bonus->length = 0;
}
else if (bonus->length > kRoomWide)
{
anyRepairs = RCheck(true);
bonus->length = kRoomWide;
}
objRect.right = bonus->length;
}
QOffsetRect(&objRect, bonus->topLeft.h, bonus->topLeft.v);
if (ForceRectInRoomRect(objRect))
{
anyRepairs = RCheck(true);
bonus->topLeft.h = objRect.left;
bonus->topLeft.v = objRect.top;
}
int maxLength = -1;
if (obj->what == kGreaseRt)
maxLength = kRoomWide - objRect.right;
if (obj->what == kGreaseLf)
maxLength = objRect.left;
if (obj->what == kSlider)
maxLength = kRoomWide - bonus->topLeft.h;
if (maxLength >= 0)
{
if (bonus->length < 0)
{
anyRepairs = RCheck(true);
bonus->length = 0;
}
else if (bonus->length > maxLength)
{
anyRepairs = RCheck(true);
bonus->length = maxLength;
}
}
return true;
}
static void LegalizeRoomLink(houseType *house, int16_t &where, bool &anyRepairs)
{
// Leftover -1 from version conversion, these are generally valid
if (where == -100)
where = -1;
if (where < -1)
{
anyRepairs = RCheck(true);
where = -1;
}
else if (where >= 0)
{
SInt16 floor, suite;
ExtractFloorSuite(house, where, &floor, &suite);
if (suite < 0 || suite >= kMaxNumRoomsH)
{
anyRepairs = RCheck(true);
where = -1;
}
if (floor > (kMaxNumRoomsV - kNumUndergroundFloors) || floor <= -kNumUndergroundFloors)
{
anyRepairs = RCheck(true);
where = -1;
}
}
}
static bool LegalizeTransport(houseType *house, size_t roomNum, size_t objectNum, bool &anyRepairs)
{
roomType *room = house->rooms + roomNum;
objectType *obj = room->objects + objectNum;
transportType *transport = &obj->data.d;
LegalizeTopLeft(transport->topLeft, anyRepairs);
LegalizeRoomLink(house, transport->where, anyRepairs);
Rect objRect = srcRects[obj->what];
ZeroRectCorner(&objRect);
if (obj->what == kInvisTrans)
{
if (transport->tall < 0)
{
anyRepairs = RCheck(true);
transport->tall = 0;
}
else if (transport->tall > kTileHigh)
{
anyRepairs = RCheck(true);
transport->tall = kTileHigh;
}
objRect.right = transport->wide;
objRect.bottom = transport->tall;
}
if (obj->what == kDeluxeTrans)
{
uint8_t codedWidth = static_cast<uint8_t>((transport->tall >> 8) & 0xff);
uint8_t codedHeight = static_cast<uint8_t>((transport->tall) & 0xff);
objRect.right = codedWidth * 4;
objRect.bottom = codedHeight * 4;
}
QOffsetRect(&objRect, transport->topLeft.h, transport->topLeft.v);
if (ForceRectInRoomRect(objRect))
{
anyRepairs = RCheck(true);
transport->topLeft.h = objRect.left;
transport->topLeft.v = objRect.top;
if (obj->what == kDeluxeTrans)
transport->tall = static_cast<int16_t>(((objRect.Width() / 4) << 8) + objRect.Height() / 4);
else if (obj->what == kInvisTrans)
{
transport->wide = static_cast<Byte>(objRect.Width());
transport->tall = static_cast<int16_t>(objRect.Height());
}
}
switch (obj->what)
{
default:
return LCheck(false);
case kUpStairs:
case kDownStairs:
if (transport->topLeft.v != kStairsTop)
{
anyRepairs = RCheck(true);
transport->topLeft.v = kStairsTop;
}
break;
case kFloorTrans:
if (transport->topLeft.v != kFloorTransTop)
{
anyRepairs = RCheck(true);
transport->topLeft.v = kFloorTransTop;
}
break;
case kCeilingTrans:
if (transport->topLeft.v != kCeilingTransTop)
{
anyRepairs = RCheck(true);
transport->topLeft.v = kCeilingTransTop;
}
break;
case kDoorInLf:
if (transport->topLeft.h != kDoorInLfLeft)
{
anyRepairs = RCheck(true);
transport->topLeft.h = kCeilingTransTop;
}
if (transport->topLeft.v != kDoorInTop)
{
anyRepairs = RCheck(true);
transport->topLeft.v = kDoorInTop;
}
break;
case kDoorInRt:
if (transport->topLeft.h != kDoorInRtLeft)
{
anyRepairs = RCheck(true);
transport->topLeft.h = kDoorInRtLeft;
}
if (transport->topLeft.v != kDoorInTop)
{
anyRepairs = RCheck(true);
transport->topLeft.v = kDoorInTop;
}
break;
case kDoorExRt:
if (transport->topLeft.h != kDoorExRtLeft)
{
anyRepairs = RCheck(true);
transport->topLeft.h = kDoorExRtLeft;
}
if (transport->topLeft.v != kDoorExTop)
{
anyRepairs = RCheck(true);
transport->topLeft.v = kDoorExTop;
}
break;
case kDoorExLf:
if (transport->topLeft.h != kDoorExLfLeft)
{
anyRepairs = RCheck(true);
transport->topLeft.h = kDoorExLfLeft;
}
if (transport->topLeft.v != kDoorExTop)
{
anyRepairs = RCheck(true);
transport->topLeft.v = kDoorExTop;
}
break;
case kWindowInLf:
if (transport->topLeft.h != kWindowInLfLeft)
{
anyRepairs = RCheck(true);
transport->topLeft.h = kWindowInLfLeft;
}
if (transport->topLeft.v != kWindowInTop)
{
anyRepairs = RCheck(true);
transport->topLeft.v = kWindowInTop;
}
break;
case kWindowInRt:
if (transport->topLeft.h != kWindowInRtLeft)
{
anyRepairs = RCheck(true);
transport->topLeft.h = kWindowInRtLeft;
}
if (transport->topLeft.v != kWindowInTop)
{
anyRepairs = RCheck(true);
transport->topLeft.v = kWindowInTop;
}
break;
case kWindowExRt:
if (transport->topLeft.h != kWindowExRtLeft)
{
anyRepairs = RCheck(true);
transport->topLeft.h = kWindowExRtLeft;
}
if (transport->topLeft.v != kWindowExTop)
{
anyRepairs = RCheck(true);
transport->topLeft.v = kWindowExTop;
}
break;
case kWindowExLf:
if (transport->topLeft.h != kWindowExLfLeft)
{
anyRepairs = RCheck(true);
transport->topLeft.h = kWindowExLfLeft;
}
if (transport->topLeft.v != kWindowExTop)
{
anyRepairs = RCheck(true);
transport->topLeft.v = kWindowExTop;
}
break;
case kInvisTrans:
case kDeluxeTrans:
case kMailboxLf:
case kMailboxRt:
break;
}
return true;
}
static bool LegalizeSwitch(houseType *house, size_t roomNum, size_t objectNum, bool &anyRepairs)
{
roomType *room = house->rooms + roomNum;
objectType *obj = room->objects + objectNum;
switchType *sw = &obj->data.e;
if (sw->delay < 0)
{
sw->delay = 0;
anyRepairs = RCheck(true);
}
bool isSwitch = false;
bool isTrigger = false;
switch (obj->what)
{
default:
return RCheck(false);
case kLightSwitch:
case kMachineSwitch:
case kThermostat:
case kPowerSwitch:
case kKnifeSwitch:
case kInvisSwitch:
isSwitch = true;
LegalizeRoomLink(house, sw->where, anyRepairs);
break;
case kTrigger:
case kLgTrigger:
LegalizeRoomLink(house, sw->where, anyRepairs);
break;
case kSoundTrigger:
break;
};
if (isSwitch)
{
switch (sw->type)
{
case kToggle:
case kForceOn:
case kForceOff:
break;
default:
anyRepairs = RCheck(true);
sw->type = kToggle;
break;
}
}
if (isTrigger)
{
if (sw->type != kOneShot)
{
anyRepairs = RCheck(true);
sw->type = kOneShot;
}
}
LegalizeTopLeft(sw->topLeft, anyRepairs);
Rect bounds = srcRects[obj->what];
ZeroRectCorner(&bounds);
QOffsetRect(&bounds, sw->topLeft.h, sw->topLeft.v);
if (ForceRectInRoomRect(bounds))
{
anyRepairs = RCheck(true);
sw->topLeft.h = bounds.left;
sw->topLeft.v = bounds.top;
}
return true;
}
static bool LegalizeLight(houseType *house, size_t roomNum, size_t objectNum, bool &anyRepairs)
{
roomType *room = house->rooms + roomNum;
objectType *obj = room->objects + objectNum;
lightType *light = &obj->data.f;
LegalizeBoolean(light->initial);
LegalizeBoolean(light->state);
LegalizeTopLeft(light->topLeft, anyRepairs);
Rect bounds = srcRects[obj->what];
ZeroRectCorner(&bounds);
if (obj->what == kTrackLight || obj->what == kFlourescent)
{
if (light->length < 0)
{
anyRepairs = RCheck(true);
light->length = 0;
}
else if (light->length > kRoomWide)
{
anyRepairs = RCheck(true);
light->length = kRoomWide;
}
bounds.right = light->length;
}
QOffsetRect(&bounds, light->topLeft.h, light->topLeft.v);
if (ForceRectInRoomRect(bounds))
{
anyRepairs = RCheck(true);
light->topLeft.h = bounds.left;
light->topLeft.v = bounds.top;
}
switch (obj->what)
{
case kCeilingLight:
if (light->topLeft.v != kCeilingLightTop)
{
anyRepairs = RCheck(true);
light->topLeft.v = kCeilingLightTop;
}
break;
case kHipLamp:
if (light->topLeft.v != kHipLampTop)
{
anyRepairs = RCheck(true);
light->topLeft.v = kHipLampTop;
}
break;
case kDecoLamp:
if (light->topLeft.v != kDecoLampTop)
{
anyRepairs = RCheck(true);
light->topLeft.v = kDecoLampTop;
}
break;
case kFlourescent:
if (light->topLeft.v != kFlourescentTop)
{
anyRepairs = RCheck(true);
light->topLeft.v = kFlourescentTop;
}
break;
case kTrackLight:
if (light->topLeft.v != kTrackLightTop)
{
anyRepairs = RCheck(true);
light->topLeft.v = kTrackLightTop;
}
break;
case kLightBulb:
case kTableLamp:
case kInvisLight:
break;
}
return true;
}
static bool LegalizeAppliance(houseType *house, size_t roomNum, size_t objectNum, bool &anyRepairs)
{
roomType *room = house->rooms + roomNum;
objectType *obj = room->objects + objectNum;
applianceType *appl = &obj->data.g;
LegalizeBoolean(appl->initial);
LegalizeBoolean(appl->state);
LegalizeTopLeft(appl->topLeft, anyRepairs);
if (obj->what != kCustomPict)
{
Rect bounds = srcRects[obj->what];
ZeroRectCorner(&bounds);
QOffsetRect(&bounds, appl->topLeft.h, appl->topLeft.v);
if (ForceRectInRoomRect(bounds))
{
anyRepairs = RCheck(true);
appl->topLeft.h = bounds.left;
appl->topLeft.v = bounds.top;
}
switch (obj->what)
{
case kToaster:
{
int maxHeight = bounds.top;
if (appl->height < 0)
{
anyRepairs = RCheck(true);
appl->height = 0;
}
else if (appl->height > maxHeight)
{
anyRepairs = RCheck(true);
appl->height = maxHeight;
}
}
break;
case kShredder:
case kMacPlus:
case kGuitar:
case kTV:
case kCoffee:
case kOutlet:
case kVCR:
case kStereo:
case kMicrowave:
case kCinderBlock:
case kFlowerBox:
case kCDs:
break;
}
}
return true;
}
static bool LegalizeEnemy(houseType *house, size_t roomNum, size_t objectNum, bool &anyRepairs)
{
roomType *room = house->rooms + roomNum;
objectType *obj = room->objects + objectNum;
enemyType *enemy = &obj->data.h;
LegalizeBoolean(enemy->initial);
LegalizeBoolean(enemy->state);
LegalizeTopLeft(enemy->topLeft, anyRepairs);
Rect bounds = srcRects[obj->what];
ZeroRectCorner(&bounds);
QOffsetRect(&bounds, enemy->topLeft.h, enemy->topLeft.v);
if (ForceRectInRoomRect(bounds))
{
anyRepairs = RCheck(true);
enemy->topLeft.h = bounds.left;
enemy->topLeft.v = bounds.top;
}
switch (obj->what)
{
case kBalloon:
case kCopterLf:
case kCopterRt:
{
int expectedV = (kTileHigh / 2) - HalfRectTall(&bounds);
if (enemy->topLeft.v != expectedV)
{
anyRepairs = RCheck(true);
enemy->topLeft.v = expectedV;
}
}
break;
case kDartLf:
{
int expectedH = kRoomWide - RectWide(&bounds);
if (enemy->topLeft.h != expectedH)
{
anyRepairs = RCheck(true);
enemy->topLeft.h = expectedH;
}
}
break;
case kDartRt:
if (enemy->topLeft.h != 0)
{
anyRepairs = RCheck(true);
enemy->topLeft.h = 0;
}
break;
case kBall:
case kFish:
{
int maxLength = bounds.top;
if (enemy->length < 0)
{
anyRepairs = RCheck(true);
enemy->length = 0;
}
else if (enemy->length > maxLength)
{
anyRepairs = RCheck(true);
enemy->length = maxLength;
}
}
break;
case kDrip:
{
int maxLength = kTileHigh - bounds.bottom;
if (enemy->length < 0)
{
anyRepairs = RCheck(true);
enemy->length = 0;
}
else if (enemy->length > maxLength)
{
anyRepairs = RCheck(true);
enemy->length = maxLength;
}
}
break;
case kCobweb:
break;
}
return true;
}
static bool LegalizeClutter(houseType *house, size_t roomNum, size_t objectNum, bool &anyRepairs)
{
roomType *room = house->rooms + roomNum;
objectType *obj = room->objects + objectNum;
clutterType *blower = &obj->data.i;
PL_NotYetImplemented_TODO("Validate");
return true;
}
static bool LegalizeObject(houseType *house, size_t roomNum, size_t objectNum, bool &anyRepairs)
{
roomType *room = house->rooms + roomNum;
objectType *obj = room->objects + objectNum;
switch (obj->what)
{
default:
obj->what = kObjectIsEmpty;
anyRepairs = RCheck(true);
break;
case kObjectIsEmpty:
break;
case kFloorVent:
case kCeilingVent:
case kFloorBlower:
case kCeilingBlower:
case kSewerGrate:
case kLeftFan:
case kRightFan:
case kTaper:
case kCandle:
case kStubby:
case kTiki:
case kBBQ:
case kInvisBlower:
case kGrecoVent:
case kSewerBlower:
case kLiftArea:
return LegalizeBlower(house, roomNum, objectNum, anyRepairs);
case kTable:
case kShelf:
case kCabinet:
case kFilingCabinet:
case kWasteBasket:
case kMilkCrate:
case kCounter:
case kDresser:
case kDeckTable:
case kStool:
case kTrunk:
case kInvisObstacle:
case kManhole:
case kBooks:
case kInvisBounce:
return LegalizeFurniture(house, roomNum, objectNum, anyRepairs);
case kRedClock:
case kBlueClock:
case kYellowClock:
case kCuckoo:
case kPaper:
case kBattery:
case kBands:
case kGreaseRt:
case kGreaseLf:
case kFoil:
case kInvisBonus:
case kStar:
case kSparkle:
case kHelium:
case kSlider:
return LegalizeBonus(house, roomNum, objectNum, anyRepairs);
case kUpStairs:
case kDownStairs:
case kMailboxLf:
case kMailboxRt:
case kFloorTrans:
case kCeilingTrans:
case kDoorInLf:
case kDoorInRt:
case kDoorExRt:
case kDoorExLf:
case kWindowInLf:
case kWindowInRt:
case kWindowExRt:
case kWindowExLf:
case kInvisTrans:
case kDeluxeTrans:
return LegalizeTransport(house, roomNum, objectNum, anyRepairs);
case kLightSwitch:
case kMachineSwitch:
case kThermostat:
case kPowerSwitch:
case kKnifeSwitch:
case kInvisSwitch:
case kTrigger:
case kLgTrigger:
case kSoundTrigger:
return LegalizeSwitch(house, roomNum, objectNum, anyRepairs);
case kCeilingLight:
case kLightBulb:
case kTableLamp:
case kHipLamp:
case kDecoLamp:
case kFlourescent:
case kTrackLight:
case kInvisLight:
return LegalizeLight(house, roomNum, objectNum, anyRepairs);
case kShredder:
case kToaster:
case kMacPlus:
case kGuitar:
case kTV:
case kCoffee:
case kOutlet:
case kVCR:
case kStereo:
case kMicrowave:
case kCinderBlock:
case kFlowerBox:
case kCDs:
case kCustomPict:
return LegalizeAppliance(house, roomNum, objectNum, anyRepairs);
case kBalloon:
case kCopterLf:
case kCopterRt:
case kDartLf:
case kDartRt:
case kBall:
case kDrip:
case kFish:
case kCobweb:
return LegalizeEnemy(house, roomNum, objectNum, anyRepairs);
case kOzma:
case kMirror:
case kMousehole:
case kFireplace:
case kFlower:
case kWallWindow:
case kBear:
case kCalendar:
case kVase1:
case kVase2:
case kBulletin:
case kCloud:
case kFaucet:
case kRug:
case kChimes:
return LegalizeClutter(house, roomNum, objectNum, anyRepairs);
}
return true;
}
static bool LegalizeRoom(houseType *house, size_t roomNum, bool &anyRepairs)
{
roomType *room = house->rooms + roomNum;
if (room->suite == kRoomIsEmpty)
return true;
if (!LegalizePascalStr(room->name, anyRepairs))
return LCheck(false);
LegalizeBoolean(room->visited);
for (int i = 0; i < kNumTiles; i++)
{
if (room->tiles[i] < 0)
{
room->tiles[i] = 0;
anyRepairs = RCheck(true);
}
else if (room->tiles[i] >= kNumTiles)
{
room->tiles[i] = kNumTiles - 1;
anyRepairs = RCheck(true);
}
}
// Enforce object type caps
enum CapType
{
CapType_Candle,
CapType_Tiki,
CapType_Coals,
CapType_Pendulum,
CapType_RubberBands,
CapType_Star,
CapType_DynamicObj,
CapType_SoundTrigger,
CapType_UpStairs,
CapType_DownStairs,
CapType_Grease,
CapType_Count,
};
int caps[CapType_Count];
caps[CapType_Candle] = kMaxCandles;
caps[CapType_Tiki] = kMaxTikis;
caps[CapType_Coals] = kMaxCoals;
caps[CapType_Pendulum] = kMaxPendulums;
caps[CapType_RubberBands] = kMaxRubberBands;
caps[CapType_Star] = kMaxStars;
caps[CapType_DynamicObj] = kMaxDynamicObs;
caps[CapType_SoundTrigger] = kMaxSoundTriggers;
caps[CapType_UpStairs] = kMaxStairs;
caps[CapType_DownStairs] = kMaxStairs;
caps[CapType_Grease] = kMaxGrease;
int counts[CapType_Count];
for (int i = 0; i < CapType_Count; i++)
counts[i] = 0;
for (size_t i = 0; i < kMaxRoomObs; i++)
{
CapType capType = CapType_Count;
objectType *obj = room->objects + i;
switch (obj->what)
{
case kTaper:
case kCandle:
case kStubby:
capType = CapType_Candle;
break;
case kTiki:
capType = CapType_Tiki;
break;
case kBBQ:
capType = CapType_Coals;
break;
case kCuckoo:
capType = CapType_Pendulum;
break;
case kBands:
capType = CapType_RubberBands;
break;
case kStar:
capType = CapType_Star;
break;
case kSparkle:
case kToaster:
case kMacPlus:
case kTV:
case kCoffee:
case kOutlet:
case kVCR:
case kStereo:
case kMicrowave:
case kBalloon:
case kCopterLf:
case kCopterRt:
case kDartLf:
case kDartRt:
case kBall:
case kDrip:
case kFish:
capType = CapType_DynamicObj;
break;
case kSoundTrigger:
capType = CapType_SoundTrigger;
break;
case kUpStairs:
capType = CapType_UpStairs;
break;
case kDownStairs:
capType = CapType_DownStairs;
break;
case kGreaseLf:
case kGreaseRt:
capType = CapType_Grease;
break;
default:
break;
};
if (capType != CapType_Count)
{
if (counts[capType] == caps[capType])
{
obj->what = kObjectIsEmpty;
anyRepairs = RCheck(true);
}
else
counts[capType]++;
}
}
// Check all objects
for (size_t i = 0; i < kMaxRoomObs; i++)
{
if (!LegalizeObject(house, roomNum, i, anyRepairs))
return LCheck(false);
}
int16_t numObjects = kMaxRoomObs;
for (size_t i = 0; i < kMaxRoomObs; i++)
{
objectType *obj = room->objects + i;
if (obj->what == kObjectIsEmpty)
numObjects--;
}
if (numObjects != room->numObjects)
{
anyRepairs = RCheck(true);
room->numObjects = numObjects;
}
return true;
}
static bool LegalizeHouse(houseType *house, bool &anyRepairs)
{
size_t nRooms = house->nRooms;
if (!LegalizeScores(&house->highScores, anyRepairs))
return false;
PL_NotYetImplemented_TODO("Validate initial pos");
// Repair room layout
for (size_t i = 0; i < nRooms; i++)
{
if (!LegalizeRoomLayout(house, i, anyRepairs))
return LCheck(false);
}
// Repair firstRoom
if (house->firstRoom < 0 || house->firstRoom >= house->nRooms || house->rooms[house->firstRoom].suite == kRoomIsEmpty)
{
if (nRooms != 0)
{
bool repairedOK = false;
for (size_t i = 0; i < nRooms; i++)
{
if (house->rooms[i].suite == kRoomIsEmpty)
continue;
house->firstRoom = static_cast<int16_t>(i);
repairedOK = true;
anyRepairs = RCheck(true);
}
if (!repairedOK)
return LCheck(false);
}
}
for (size_t i = 0; i < nRooms; i++)
{
if (!LegalizeRoom(house, i, anyRepairs))
return LCheck(false);
}
return true;
}
Boolean ReadHouse (GpIOStream *houseStream, bool untrusted)
{
short whichRoom;
// There should be no padding remaining the house type
GP_STATIC_ASSERT(sizeof(houseType) - sizeof(roomType) == houseType::kBinaryDataSize + 2);
if (!houseOpen)
{
YellowAlert(kYellowUnaccounted, 2);
return (false);
}
const GpUFilePos_t byteCount = houseStream->Size();
#ifdef COMPILEDEMO
if (byteCount != 16526L)
return (false);
#endif
if (thisHouse != nil)
{
thisHouse.Dispose();
thisHouse = nil;
}
if (byteCount < houseType::kBinaryDataSize)
{
YellowAlert(kYellowHouseDamaged, 1);
return (false);
}
const size_t roomDataSize = static_cast<size_t>(byteCount) - houseType::kBinaryDataSize;
if (roomDataSize % sizeof(roomType) != 0)
{
YellowAlert(kYellowHouseDamaged, 2);
return (false);
}
const size_t roomCountFromDataSize = roomDataSize / sizeof(roomType);
// GP: Correct for padding
const size_t alignmentPadding = sizeof(houseType) - sizeof(roomType) - houseType::kBinaryDataSize;
thisHouse = NewHandle(byteCount + alignmentPadding).StaticCast<houseType>();
if (thisHouse == nil)
{
YellowAlert(kYellowNoMemory, 10);
return(false);
}
if (!houseStream->SeekStart(0))
{
CheckFileError(PLErrors::kIOError, thisHouseName);
return(false);
}
const size_t readByteCount = houseStream->Read(*thisHouse, byteCount);
if (readByteCount != byteCount || readByteCount < houseType::kBinaryDataSize)
{
CheckFileError(PLErrors::kIOError, thisHouseName);
return(false);
}
if (alignmentPadding != 0)
{
// GP: Correct for padding
const size_t roomDataSize = byteCount - houseType::kBinaryDataSize;
uint8_t *houseDataBytes = reinterpret_cast<uint8_t*>(*thisHouse);
memmove((*thisHouse)->rooms, houseDataBytes + houseType::kBinaryDataSize, roomDataSize);
}
ByteSwapHouse(*thisHouse, static_cast<size_t>(byteCount), false);
numberRooms = (*thisHouse)->nRooms;
if (numberRooms < 0 || static_cast<size_t>(numberRooms) > roomCountFromDataSize)
{
YellowAlert(kYellowHouseDamaged, 3);
return (false);
}
bool anyRepairs = false;
if (untrusted)
{
if (!LegalizeHouse(*thisHouse, anyRepairs))
{
YellowAlert(kYellowHouseDamaged, 4);
return (false);
}
if (anyRepairs)
YellowAlert(kYellowHouseRepaired, 0);
}
#ifdef COMPILEDEMO
if (numberRooms != 45)
return (false);
#endif
if ((numberRooms < 1) || (byteCount == 0L))
{
numberRooms = 0;
noRoomAtAll = true;
YellowAlert(kYellowNoRooms, 0);
}
wasHouseVersion = (*thisHouse)->version;
if (wasHouseVersion >= kNewHouseVersion)
{
YellowAlert(kYellowNewerVersion, 0);
return(false);
}
houseUnlocked = (((*thisHouse)->timeStamp & 0x00000001) == 0);
#ifdef COMPILEDEMO
if (houseUnlocked)
return (false);
#endif
changeLockStateOfHouse = false;
saveHouseLocked = false;
whichRoom = (*thisHouse)->firstRoom;
#ifdef COMPILEDEMO
if (whichRoom != 0)
return (false);
#endif
wardBitSet = (((*thisHouse)->flags & 0x00000001) == 0x00000001);
phoneBitSet = (((*thisHouse)->flags & 0x00000002) == 0x00000002);
bannerStarCountOn = (((*thisHouse)->flags & 0x00000004) == 0x00000000);
noRoomAtAll = (RealRoomNumberCount() == 0);
thisRoomNumber = -1;
previousRoom = -1;
if (!noRoomAtAll)
CopyRoomToThisRoom(whichRoom);
if (houseIsReadOnly)
{
houseUnlocked = false;
if (ReadScoresFromDisk())
{
}
}
objActive = kNoObjectSelected;
ReflectCurrentRoom(true);
fileDirty = false;
UpdateMenus(false);
return (true);
}
//-------------------------------------------------------------- WriteHouse
// This function writes out the house data to disk.
Boolean WriteHouse (Boolean checkIt)
{
UInt32 timeStamp;
long byteCount;
PLError_t theErr;
if ((housesFound < 1) || (thisHouseIndex == -1))
return(false);
if (!houseOpen)
{
YellowAlert(kYellowUnaccounted, 4);
return (false);
}
if (!houseCFile)
{
YellowAlert(kYellowUnaccounted, 4);
return (false);
}
GpIOStream *houseStream = nil;
theErr = houseCFile->OpenData(PortabilityLayer::EFilePermission_Write, GpFileCreationDispositions::kCreateOrOverwrite, houseStream);
if (theErr != PLErrors::kNone)
return (false);
CopyThisRoomToRoom();
if (checkIt)
CheckHouseForProblems();
byteCount = GetHandleSize(thisHouse.StaticCast<void>());
if (fileDirty)
{
int64_t currentTime = PLDrivers::GetSystemServices()->GetTime();
if (currentTime > 0x7fffffff)
currentTime = 0x7fffffff;
if (changeLockStateOfHouse)
houseUnlocked = !saveHouseLocked;
if (houseUnlocked) // house unlocked
timeStamp &= 0x7FFFFFFE;
else
timeStamp |= 0x00000001;
(*thisHouse)->timeStamp = (long)timeStamp;
(*thisHouse)->version = wasHouseVersion;
}
long headerSize = houseType::kBinaryDataSize;
long roomsSize = sizeof(roomType) * (*thisHouse)->nRooms;
ByteSwapHouse(*thisHouse, static_cast<size_t>(byteCount), true);
if (houseStream->Write(*thisHouse, headerSize) != headerSize)
{
CheckFileError(PLErrors::kIOError, thisHouseName);
ByteSwapHouse(*thisHouse, static_cast<size_t>(byteCount), false);
houseStream->Close();
return(false);
}
if (houseStream->Write((*thisHouse)->rooms, roomsSize) != roomsSize)
{
CheckFileError(PLErrors::kIOError, thisHouseName);
ByteSwapHouse(*thisHouse, static_cast<size_t>(byteCount), false);
houseStream->Close();
return(false);
}
ByteSwapHouse(*thisHouse, static_cast<size_t>(byteCount), false);
houseStream->Close();
if (changeLockStateOfHouse)
{
changeLockStateOfHouse = false;
ReflectCurrentRoom(true);
}
fileDirty = false;
UpdateMenus(false);
return (true);
}
//-------------------------------------------------------------- CloseHouse
// This function closes the current house that is open.
Boolean CloseHouse (void)
{
if (!houseOpen)
return (true);
if (fileDirty)
{
#ifndef COMPILEDEMO
if (!QuerySaveChanges()) // false signifies user canceled
return(false);
#endif
}
CloseHouseResFork();
CloseHouseMovie();
if (houseCFile)
{
houseCFile->Close();
houseCFile = nil;
}
houseOpen = false;
return (true);
}
//-------------------------------------------------------------- OpenHouseResFork
// Opens the resource fork of the current house that is open.
void OpenHouseResFork (void)
{
PortabilityLayer::ResourceManager *rm = PortabilityLayer::ResourceManager::GetInstance();
if (houseResFork == nullptr)
{
houseResFork = rm->LoadResFile(houseCFile);
if (!houseResFork)
YellowAlert(kYellowFailedResOpen, PLErrors::kResourceError);
}
}
//-------------------------------------------------------------- CloseHouseResFork
// Closes the resource fork of the current house that is open.
void CloseHouseResFork (void)
{
if (houseResFork)
{
PortabilityLayer::ResourceManager *rm = PortabilityLayer::ResourceManager::GetInstance();
houseResFork->Destroy();
houseResFork = nullptr;
}
}
//-------------------------------------------------------------- QuerySaveChanges
// If changes were made, this function will present the user with a<>
// dialog asking them if they would like to save the changes.
#ifndef COMPILEDEMO
Boolean QuerySaveChanges (void)
{
short hitWhat;
Boolean whoCares;
if (!fileDirty)
return(true);
InitCursor();
// CenterAlert(kSaveChangesAlert);
DialogTextSubstitutions substitutions(thisHouseName);
hitWhat = PortabilityLayer::DialogManager::GetInstance()->DisplayAlert(kSaveChangesAlert, &substitutions);
if (hitWhat == kSaveChanges)
{
if (wasHouseVersion < kHouseVersion)
ConvertHouseVer1To2();
wasHouseVersion = kHouseVersion;
if (WriteHouse(true))
return (true);
else
return (false);
}
else if (hitWhat == kDiscardChanges)
{
fileDirty = false;
if (!quitting)
{
whoCares = CloseHouse();
OpenHouse(true);
}
UpdateMenus(false);
return (true);
}
else
return (false);
}
#endif
//-------------------------------------------------------------- YellowAlert
// This is a dialog used to present an error code and explanation<6F>
// to the user when a non-lethal error has occurred. Ideally, of<6F>
// course, this never is called.
void YellowAlert (short whichAlert, short identifier)
{
IGpLogDriver *logger = PLDrivers::GetLogDriver();
if (logger)
logger->Printf(IGpLogDriver::Category_Warning, "Yellow alert %i identifier %i", static_cast<int>(whichAlert), static_cast<int>(identifier));
#define kYellowAlert 1006
Str255 errStr, errNumStr;
short whoCares;
InitCursor();
GetIndString(errStr, kYellowAlert, whichAlert);
NumToString((long)identifier, errNumStr);
// CenterAlert(kYellowAlert);
DialogTextSubstitutions substitutions(errStr, errNumStr);
whoCares = PortabilityLayer::DialogManager::GetInstance()->DisplayAlert(kYellowAlert, &substitutions);
}
//-------------------------------------------------------------- LoadHousePicture
THandle<void> LoadHouseResource(const PortabilityLayer::ResTypeID &resTypeID, int16_t resID)
{
THandle<void> hdl = houseResFork->LoadResource(resTypeID, resID);
if (hdl != nullptr)
return hdl;
return PortabilityLayer::ResourceManager::GetInstance()->GetAppResource(resTypeID, resID);
}
//-------------------------------------------------------------- ExportHouse
namespace ExportHouseResults
{
enum ExportHouseResult
{
kOK,
kStreamFailed,
kIOError,
kMemError,
kResourceError,
kInternalError,
};
}
typedef ExportHouseResults::ExportHouseResult ExportHouseResult_t;
struct SimpleResource
{
PortabilityLayer::ResTypeID m_resType;
int m_resourceID;
PortabilityLayer::PascalStr<255> m_name;
size_t m_offsetInResData;
uint8_t m_attributes;
};
static bool AppendRaw(GpVector<uint8_t> &bytes, const void *data, size_t size)
{
for (size_t i = 0; i < size; i++)
{
if (!bytes.Append(static_cast<const uint8_t*>(data)[i]))
return false;
}
return true;
}
template<class T>
static bool AppendRawStruct(GpVector<uint8_t> &bytes, const T &value)
{
return AppendRaw(bytes, &value, sizeof(T));
}
static ExportHouseResult_t TryExportSound(GpVector<uint8_t> &resData, const THandle<void> &resHandle)
{
const void *dataContents = nullptr;
size_t dataSize = 0;
if (!ParseAndConvertSoundChecked(resHandle, dataContents, dataSize))
return ExportHouseResults::kResourceError;
// Don't ask...
const uint8_t commandStreamPrefix[20] = { 0, 1, 0, 1, 0, 5, 0, 0, 0, 0xa0, 0, 1, 0x80, 0x51, 0, 0, 0, 0, 0, 0x14 };
struct BufferHeader
{
BEUInt32_t m_samplePtr;
BEUInt32_t m_length;
BEFixed32_t m_sampleRate;
BEUInt32_t m_loopStart;
BEUInt32_t m_loopEnd;
uint8_t m_encoding;
uint8_t m_baseFrequency;
};
BufferHeader bufferHeader;
bufferHeader.m_samplePtr = 0;
bufferHeader.m_length = static_cast<uint32_t>(dataSize);
bufferHeader.m_sampleRate.m_intPart = 0x56ee;
bufferHeader.m_sampleRate.m_fracPart = 0x8ba3;
bufferHeader.m_loopStart = static_cast<uint32_t>(dataSize - 2);
bufferHeader.m_loopEnd = static_cast<uint32_t>(dataSize - 1);
bufferHeader.m_encoding = 0;
bufferHeader.m_baseFrequency = 0x3c;
if (!resData.Resize(sizeof(bufferHeader) + sizeof(commandStreamPrefix) + dataSize))
return ExportHouseResults::kMemError;
memcpy(&resData[0], commandStreamPrefix, sizeof(commandStreamPrefix));
memcpy(&resData[sizeof(commandStreamPrefix)], &bufferHeader, sizeof(bufferHeader));
if (dataSize > 0)
memcpy(&resData[sizeof(commandStreamPrefix) + sizeof(bufferHeader)], dataContents, dataSize);
return ExportHouseResults::kOK;
}
static void BitSwap4(GpVector<uint8_t> &vec, size_t count)
{
for (size_t i = 0; i < count; i++)
{
uint8_t v = vec[i];
v = (((v >> 4) & 0xf) | ((v << 4) & 0xf));
vec[i] = v;
}
}
static void BitSwap2(GpVector<uint8_t> &vec, size_t count)
{
for (size_t i = 0; i < count; i++)
{
uint8_t v = vec[i];
v = (((v >> 2) & 0x33) | ((v << 2) & 0xcc));
vec[i] = v;
}
}
static void BitSwap1(GpVector<uint8_t> &vec, size_t count)
{
for (size_t i = 0; i < count; i++)
{
uint8_t v = vec[i];
v = (((v >> 1) & 0x55) | ((v << 1) & 0xaa));
vec[i] = v;
}
}
namespace RLEEncoder
{
static const size_t kMaxRepeat = 129;
static const size_t kMaxLiteral = 128;
bool EmitSymbol(GpVector<uint8_t> &compressedData, uint8_t sym)
{
return compressedData.Append(sym);
}
bool EmitSymbol(GpVector<uint8_t> &compressedData, uint16_t sym)
{
return compressedData.Append((sym >> 8) & 0xff) && compressedData.Append(sym & 0xff);
}
template<class T>
bool EmitLiterals(GpVector<uint8_t> &compressedData, const T *symbols, size_t length)
{
if (length == 0)
return true;
assert(length <= kMaxLiteral);
if (!compressedData.Append(static_cast<uint8_t>(length - 1)))
return false;
for (size_t i = 0; i < length; i++)
{
if (!EmitSymbol(compressedData, symbols[i]))
return false;
}
return true;
}
template<class T>
bool EmitRepeat(GpVector<uint8_t> &compressedData, const T &symbol, size_t length)
{
if (length < 2)
return EmitLiterals(compressedData, &symbol, length);
assert(length <= kMaxRepeat);
if (!compressedData.Append(static_cast<uint8_t>(257 - length)))
return false;
if (!EmitSymbol(compressedData, symbol))
return false;
return true;
}
template<class T>
bool PackRLE(GpVector<uint8_t> &compressedData, const GpVector<T> &uncompressedData)
{
size_t numUncompressed = uncompressedData.Count();
const T *uncompressedSymbols = uncompressedData.Buffer();
if (!compressedData.Resize(0))
return false;
size_t literalStartLoc = 0;
size_t repeatStartLoc = 0;
size_t readPos = 0;
// Loop/exit invariants:
// repeatStartLoc - literalStartLoc <= kMaxLiteral
// i - repeatStartLoc < kMaxRepeat
for (size_t i = 0; i < numUncompressed; i++)
{
T b = uncompressedSymbols[i];
if (b != uncompressedSymbols[repeatStartLoc])
{
// Run terminates at i
const size_t repeatLength = i - repeatStartLoc;
const size_t literalLength = repeatStartLoc - literalStartLoc;
// Determine if we should flush the repeat or fold it into the literal span.
// There are several situations that can happen here:
// Repeat length is 1:
// Literal span is at limit:
// Emit literal span, start new literal span at repeatStartLoc
// Literal span is below limit:
// Do nothing
// Repeat length is 2:
// Literal span is 0:
// Emit repeat
// Literal span is non-zero and appending repeat to literal span would be at or exceed limit:
// Emit literal span and repeat
// Otherwise:
// Do nothing
// Repeat length is 3+:
// Emit literal span and repeat
if (repeatLength == 1)
{
if (literalLength == kMaxLiteral)
{
if (!EmitLiterals(compressedData, uncompressedSymbols + literalStartLoc, literalLength))
return false;
literalStartLoc = repeatStartLoc;
}
}
else if (repeatLength == 2)
{
if (literalLength == 0 || (literalLength + repeatLength >= kMaxLiteral))
{
if (literalLength != 0)
{
if (!EmitLiterals(compressedData, uncompressedSymbols + literalStartLoc, literalLength))
return false;
}
if (!EmitRepeat(compressedData, uncompressedSymbols[repeatStartLoc], repeatLength))
return false;
literalStartLoc = i;
}
}
else if (repeatLength >= 3)
{
if (literalLength != 0)
{
if (!EmitLiterals(compressedData, uncompressedSymbols + literalStartLoc, literalLength))
return false;
}
if (!EmitRepeat(compressedData, uncompressedSymbols[repeatStartLoc], repeatLength))
return false;
literalStartLoc = i;
}
repeatStartLoc = i;
}
else
{
// i is a repeat character
const size_t repeatLength = i + 1 - repeatStartLoc;
const size_t literalLength = repeatStartLoc - literalStartLoc;
if (repeatLength == kMaxRepeat)
{
if (literalLength != 0)
{
if (!EmitLiterals(compressedData, uncompressedSymbols + literalStartLoc, literalLength))
return false;
}
if (!EmitRepeat(compressedData, uncompressedSymbols[repeatStartLoc], repeatLength))
return false;
literalStartLoc = i + 1;
repeatStartLoc = i + 1;
}
}
}
// Final flush
size_t repeatLength = numUncompressed - repeatStartLoc;
size_t literalLength = repeatStartLoc - literalStartLoc;
if (repeatLength == 1)
{
if (literalLength < kMaxLiteral)
{
literalLength++;
repeatLength = 0;
}
}
if (literalLength != 0)
{
if (!EmitLiterals(compressedData, uncompressedSymbols + literalStartLoc, literalLength))
return false;
}
if (repeatLength == 1)
{
if (!EmitLiterals(compressedData, uncompressedSymbols + repeatStartLoc, 1))
return false;
}
else if (repeatLength >= 2)
{
if (!EmitRepeat(compressedData, uncompressedSymbols[repeatStartLoc], repeatLength))
return false;
}
return true;
}
}
static ExportHouseResult_t TryExportPictFromSurface(GpVector<uint8_t> &resData, DrawSurface *surface)
{
bool couldBe16Bit = true;
bool couldBe8Bit = true;
int numUniqueColors = 0;
PortabilityLayer::RGBAColor uniqueColors[256];
for (int i = 0; i < 256; i++)
uniqueColors[i] = PortabilityLayer::RGBAColor::Create(0, 0, 0, 255);
const Rect rect = surface->m_port.GetRect();
const size_t width = rect.Width();
const size_t height = rect.Height();
THandle<PixMap> pixMapHdl = surface->m_port.GetPixMap();
const PixMap *pixMap = *pixMapHdl;
const uint8_t *imageData = static_cast<const uint8_t*>(pixMap->m_data);
const size_t pixelDataPitch = pixMap->m_pitch;
assert(pixMap->m_pixelFormat == GpPixelFormats::kRGB32);
for (size_t row = 0; row < height; row++)
{
const uint8_t *rowData = imageData + pixMap->m_pitch * row;
if (!couldBe8Bit && !couldBe16Bit)
break;
for (size_t col = 0; col < width; col++)
{
const uint8_t *pixelData = rowData + col * 4;
if (couldBe16Bit)
{
for (int ch = 0; ch < 3; ch++)
{
uint8_t channelData = pixelData[ch];
if ((channelData >> 2) != (channelData & 0x7))
{
couldBe16Bit = false;
break;
}
}
}
if (couldBe8Bit)
{
PortabilityLayer::RGBAColor rgbaColor = PortabilityLayer::RGBAColor::Create(pixelData[0], pixelData[1], pixelData[2], pixelData[3]);
bool matchedColor = false;
for (int i = 0; i < numUniqueColors; i++)
{
if (uniqueColors[i] == rgbaColor)
{
matchedColor = true;
break;
}
}
if (!matchedColor)
{
if (numUniqueColors == 256)
couldBe8Bit = false;
else
uniqueColors[numUniqueColors++] = rgbaColor;
}
}
}
}
bool isBWBitmap = false;
if (numUniqueColors <= 2)
{
isBWBitmap = true;
for (int c = 0; c < numUniqueColors; c++)
{
if (uniqueColors[c] != StdColors::Black() && uniqueColors[c] != StdColors::White())
isBWBitmap = false;
}
if (isBWBitmap)
{
numUniqueColors = 2;
uniqueColors[0] = StdColors::White();
uniqueColors[1] = StdColors::Black();
}
}
int bpp = 0;
if (isBWBitmap)
bpp = 1;
else if (couldBe8Bit)
{
if (numUniqueColors <= 2)
bpp = 1;
else if (numUniqueColors <= 4)
bpp = 2;
else if (numUniqueColors <= 16)
bpp = 4;
else
bpp = 8;
}
else if (couldBe16Bit)
bpp = 16;
else
bpp = 32;
// The typical structure of a PICT is header, ClipRegion, then a raster op.
// We use V1 pict for 1bpp and V2 for all others.
struct PictHeader
{
uint8_t m_size[2];
BERect m_rect;
};
BERect beRect;
beRect.top = beRect.left = 0;
beRect.right = static_cast<int16_t>(width);
beRect.bottom = static_cast<int16_t>(height);
PictHeader pictHeader;
pictHeader.m_size[0] = 0;
pictHeader.m_size[1] = 0;
pictHeader.m_rect = beRect;
if (!AppendRawStruct(resData, pictHeader))
return ExportHouseResults::kMemError;
int pictVersion = 1;
if (isBWBitmap)
{
const uint8_t versionTag[2] = { 0x11, 0x01 };
if (!AppendRaw(resData, versionTag, 2))
return ExportHouseResults::kMemError;
}
else
{
pictVersion = 2;
struct PictV2Header
{
BEUInt16_t m_versionTag;
BEUInt16_t m_versionOp;
BEUInt16_t m_headerOp;
BEInt16_t m_v2Version;
BEInt16_t m_reserved1;
BEFixed32_t m_top;
BEFixed32_t m_left;
BEFixed32_t m_bottom;
BEFixed32_t m_right;
BEUInt32_t m_reserved2;
};
GP_STATIC_ASSERT(sizeof(PictV2Header) == 30);
PictV2Header v2Header;
v2Header.m_versionTag = 0x0011;
v2Header.m_versionOp = 0x02ff;
v2Header.m_headerOp = 0x0c00;
v2Header.m_v2Version = -1;
v2Header.m_reserved1 = -1;
v2Header.m_top.m_intPart = beRect.top;
v2Header.m_top.m_fracPart = 0;
v2Header.m_left.m_intPart = beRect.left;
v2Header.m_left.m_fracPart = 0;
v2Header.m_bottom.m_intPart = beRect.bottom;
v2Header.m_bottom.m_fracPart = 0;
v2Header.m_right.m_intPart = beRect.right;
v2Header.m_right.m_fracPart = 0;
if (!AppendRawStruct(resData, v2Header))
return ExportHouseResults::kMemError;
}
// Emit ClipRgn opcode
if (pictVersion == 1)
{
const uint8_t clipRgnOpcode[1] = { PortabilityLayer::QDOpcodes::kClipRegion };
if (!AppendRaw(resData, clipRgnOpcode, 1))
return ExportHouseResults::kMemError;
}
else if (pictVersion == 2)
{
const uint8_t clipRgnOpcode[2] = { 0, PortabilityLayer::QDOpcodes::kClipRegion };
if (!AppendRaw(resData, clipRgnOpcode, 2))
return ExportHouseResults::kMemError;
}
struct ClipRgnData
{
BEUInt16_t m_structureSize;
BERect m_rect;
};
GP_STATIC_ASSERT(sizeof(ClipRgnData) == 10);
ClipRgnData clipRgnData;
clipRgnData.m_structureSize = sizeof(ClipRgnData);
clipRgnData.m_rect = beRect;
if (!AppendRawStruct(resData, clipRgnData))
return ExportHouseResults::kMemError;
// Emit image
const size_t bitsPerRow = width * bpp;
const size_t bytesPerRow = (bitsPerRow + 7) / 8;
const size_t expansionCapacity = bytesPerRow + (bytesPerRow / 128) + 16; // Worst-case scenario for RLE failure to compress
uint16_t bitmapOpcode = 0;
int packType = 0;
bool isDirect = false;
if (bpp <= 8)
{
if (bytesPerRow < 8)
{
packType = 1;
bitmapOpcode = PortabilityLayer::QDOpcodes::kBitsRect;
}
else
{
packType = 0;
bitmapOpcode = PortabilityLayer::QDOpcodes::kPackBitsRect;
}
}
else
{
isDirect = true;
bitmapOpcode = PortabilityLayer::QDOpcodes::kDirectBitsRect;
if (bpp == 16)
packType = 3;
else if (bpp == 32)
packType = 4;
else
return ExportHouseResults::kInternalError;
}
if (pictVersion == 1)
{
const uint8_t opcode = static_cast<uint8_t>(bitmapOpcode);
if (!AppendRaw(resData, &opcode, 1))
return ExportHouseResults::kMemError;
}
else if (pictVersion == 2)
{
const BEUInt16_t opcode(bitmapOpcode);
if (!AppendRaw(resData, &opcode, 2))
return ExportHouseResults::kMemError;
}
// Write prelude
const bool isPixmap = !isBWBitmap;
{
if (isDirect)
{
struct DirectPrelude
{
BEUInt32_t m_baseAddress;
BEUInt16_t m_rowSize;
};
DirectPrelude prelude;
prelude.m_baseAddress = 0;
prelude.m_rowSize = static_cast<uint16_t>(0x8000 | bytesPerRow);
if (!AppendRawStruct(resData, prelude))
return ExportHouseResults::kMemError;
}
else
{
uint16_t rowSize = static_cast<uint16_t>(bytesPerRow);
if (!isBWBitmap)
rowSize |= 0x8000;
BEUInt16_t rowSizeBE(rowSize);
if (!AppendRawStruct(resData, rowSizeBE))
return ExportHouseResults::kMemError;
}
}
// Do actual image packing, we need to do this now so we have the pack size available
GpVector<uint8_t> packedImage(PLDrivers::GetAlloc());
GpVector<uint8_t> uncompressedRowData8(PLDrivers::GetAlloc());
GpVector<uint16_t> uncompressedRowData16(PLDrivers::GetAlloc());
GpVector<uint8_t> compressedRowData(PLDrivers::GetAlloc());
if (packType == 4)
{
if (!uncompressedRowData8.Resize(bytesPerRow))
return ExportHouseResults::kMemError;
}
else
{
if (!uncompressedRowData16.Resize(bytesPerRow / 2))
return ExportHouseResults::kMemError;
}
if (!compressedRowData.Resize(expansionCapacity))
return ExportHouseResults::kMemError;
for (size_t row = 0; row < height; row++)
{
if (!uncompressedRowData8.Resize(0))
return ExportHouseResults::kMemError;
if (!uncompressedRowData16.Resize(0))
return ExportHouseResults::kMemError;
const uint8_t *srcRowStart = imageData + pixelDataPitch * row;
if (packType == 4)
{
// RGB24 images
for (size_t ch = 0; ch < 3; ch++)
{
for (size_t col = 0; col < width; col++)
{
const uint8_t *srcPixelStart = srcRowStart + col * 4;
if (!uncompressedRowData8.Append(srcPixelStart[ch]))
return ExportHouseResults::kMemError;
}
}
}
else if (couldBe16Bit)
{
assert(packType == 3);
for (size_t col = 0; col < width; col++)
{
const uint8_t *srcPixelStart = srcRowStart + col * 4;
uint16_t packed = ((srcPixelStart[0] << 7) & 0x7c00) | ((srcPixelStart[1] << 2) & 0x3e0) | ((srcPixelStart[2] >> 3) & 0x1f);
if (!uncompressedRowData16.Append(packed))
return ExportHouseResults::kMemError;
}
}
else
{
assert(couldBe8Bit);
int numBitsSpooled = 0;
uint8_t spooledBits = 0;
for (size_t col = 0; col < width; col++)
{
const uint8_t *srcPixelStart = srcRowStart + col * 4;
PortabilityLayer::RGBAColor color = PortabilityLayer::RGBAColor::Create(srcPixelStart[0], srcPixelStart[1], srcPixelStart[2], srcPixelStart[3]);
int colorIndex = -1;
for (int ci = 0; ci < numUniqueColors; ci++)
{
if (color == uniqueColors[ci])
{
colorIndex = ci;
break;
}
}
assert(colorIndex >= 0);
spooledBits <<= bpp;
spooledBits |= colorIndex;
numBitsSpooled += bpp;
if (numBitsSpooled == 8)
{
if (!uncompressedRowData8.Append(spooledBits))
return ExportHouseResults::kMemError;
numBitsSpooled = 0;
spooledBits = 0;
}
}
if (numBitsSpooled != 0)
{
spooledBits <<= (8 - numBitsSpooled);
if (!uncompressedRowData8.Append(spooledBits))
return ExportHouseResults::kMemError;
}
}
if (!compressedRowData.Resize(0))
return ExportHouseResults::kMemError;
bool needsLengthMarker = false;
switch (packType)
{
case 0:
case 4:
// 8-bit RLE
if (!RLEEncoder::PackRLE<uint8_t>(compressedRowData, uncompressedRowData8))
return ExportHouseResults::kMemError;
needsLengthMarker = true;
break;
case 1:
// Uncompressed
if (!compressedRowData.Resize(bytesPerRow))
return ExportHouseResults::kMemError;
for (size_t i = 0; i < bytesPerRow; i++)
compressedRowData[i] = uncompressedRowData8[i];
needsLengthMarker = false;
break;
case 3:
// 16-bit RLE
if (!RLEEncoder::PackRLE<uint16_t>(compressedRowData, uncompressedRowData16))
return ExportHouseResults::kMemError;
needsLengthMarker = true;
break;
default:
assert(false);
return ExportHouseResults::kInternalError;
};
const size_t compressedSize = compressedRowData.Count();
if (needsLengthMarker)
{
if (bytesPerRow > 250)
packedImage.Append((compressedSize >> 8) & 0xff);
packedImage.Append(compressedSize & 0xff);
}
for (size_t i = 0; i < compressedSize; i++)
packedImage.Append(compressedRowData[i]);
}
// Write BitMap/PixMap
{
if (isBWBitmap)
{
struct BitMapData
{
BEBitMap m_bitMap;
BERect m_srcRect;
BERect m_destRect;
BEUInt16_t m_transferMode;
};
BitMapData bmData;
bmData.m_bitMap.m_bounds = beRect;
bmData.m_srcRect = beRect;
bmData.m_destRect = beRect;
bmData.m_transferMode = 0;
if (!AppendRawStruct(resData, bmData))
return ExportHouseResults::kMemError;
}
else
{
BEPixMap pixMap;
pixMap.m_bounds = beRect;
pixMap.m_version = 0;
pixMap.m_packType = packType;
pixMap.m_packSize = static_cast<uint32_t>(packedImage.Count());
pixMap.m_hRes = 0x480000;
pixMap.m_vRes = 0x480000;
pixMap.m_pixelType = (isDirect ? 16 : 0);
pixMap.m_pixelSize = bpp;
pixMap.m_componentCount = isDirect ? 3 : 1;
if (bpp == 32)
pixMap.m_componentSize = 8;
else if (bpp == 16)
pixMap.m_componentSize = 5;
else
pixMap.m_componentSize = bpp;
pixMap.m_planeSizeBytes = 0;
pixMap.m_clutHandle = 0;
pixMap.m_unused = 0;
if (!AppendRawStruct(resData, pixMap))
return ExportHouseResults::kMemError;
if (isDirect)
{
}
else
{
BEColorTableHeader clutHeader;
clutHeader.m_resourceID = 0;
clutHeader.m_flags = 0;
clutHeader.m_numItemsMinusOne = numUniqueColors - 1;
if (!AppendRawStruct(resData, clutHeader))
return ExportHouseResults::kMemError;
for (int i = 0; i < numUniqueColors; i++)
{
BEColorTableItem item;
item.m_index = i;
item.m_red[0] = item.m_red[1] = uniqueColors[i].r;
item.m_green[0] = item.m_green[1] = uniqueColors[i].g;
item.m_blue[0] = item.m_blue[1] = uniqueColors[i].b;
if (!AppendRawStruct(resData, item))
return ExportHouseResults::kMemError;
}
}
struct TransferData
{
BERect m_srcRect;
BERect m_destRect;
BEUInt16_t m_transferMode;
};
TransferData transferData;
transferData.m_srcRect = beRect;
transferData.m_destRect = beRect;
transferData.m_transferMode = 0;
if (!AppendRawStruct(resData, transferData))
return ExportHouseResults::kMemError;
}
}
// Write image contents
if (!AppendRaw(resData, &packedImage[0], packedImage.Count()))
return ExportHouseResults::kMemError;
// Write pad byte (??)
if (!isBWBitmap && (resData.Count() & 1) != 0)
{
if (!resData.Append(0))
return ExportHouseResults::kMemError;
}
// Emit EOP opcode
if (pictVersion == 1)
{
const uint8_t eopOpcode[1] = { PortabilityLayer::QDOpcodes::kEndOfPicture };
if (!AppendRaw(resData, eopOpcode, 1))
return ExportHouseResults::kMemError;
}
else if (pictVersion == 2)
{
const uint8_t eopOpcode[2] = { 0, PortabilityLayer::QDOpcodes::kEndOfPicture };
if (!AppendRaw(resData, eopOpcode, 2))
return ExportHouseResults::kMemError;
}
return ExportHouseResults::kOK;
}
static ExportHouseResult_t TryExportPICT(GpVector<uint8_t> &resData, const THandle<void> &resHandle)
{
// Parse bitmap header
const THandle<BitmapImage> bmpHandle = resHandle.StaticCast<BitmapImage>();
const BitmapImage *bmp = *bmpHandle;
const Rect rect = bmp->GetRect();
DrawSurface *surface = nullptr;
if (NewGWorld(&surface, GpPixelFormats::kRGB32, &rect, nullptr) != PLErrors::kNone)
return ExportHouseResults::kMemError;
surface->DrawPicture(bmpHandle, rect, false);
ExportHouseResult_t result = TryExportPictFromSurface(resData, surface);
DisposeGWorld(surface);
return result;
}
static ExportHouseResult_t TryExportResource(GpVector<uint8_t> &resData, PortabilityLayer::IResourceArchive *resArchive, const PortabilityLayer::ResTypeID &resTypeID, int16_t resID)
{
THandle<void> resHandle = resArchive->LoadResource(resTypeID, resID);
if (!resHandle)
return ExportHouseResults::kMemError;
if (resTypeID == PortabilityLayer::ResTypeID('PICT'))
{
ExportHouseResult_t exportResult = TryExportPICT(resData, resHandle);
resHandle.Dispose();
return exportResult;
}
if (resTypeID == PortabilityLayer::ResTypeID('snd '))
{
ExportHouseResult_t exportResult = TryExportSound(resData, resHandle);
resHandle.Dispose();
return exportResult;
}
const size_t size = resHandle.MMBlock()->m_size;
if (!resData.Resize(size))
{
resHandle.Dispose();
return ExportHouseResults::kMemError;
}
if (size > 0)
memcpy(&resData[0], *resHandle, size);
resHandle.Dispose();
return ExportHouseResults::kOK;
}
ExportHouseResult_t TryExportResources(GpIOStream *stream, PortabilityLayer::IResourceArchive *resArchive)
{
if (!resArchive)
return ExportHouseResults::kOK;
IGpAllocator *alloc = PLDrivers::GetAlloc();
GpVector<SimpleResource> resources(alloc);
GpUFilePos_t resForkStart = stream->Tell();
PortabilityLayer::IResourceIterator *iterator = resArchive->EnumerateResources();
if (!iterator)
return ExportHouseResults::kMemError;
const GpUFilePos_t resForkHeaderPos = stream->Tell();
GpUFilePos_t resForkDataStart = 0;
PortabilityLayer::ResTypeID resTypeID;
int16_t resID = 0;
bool isFirstResource = true;
while (iterator->GetOne(resTypeID, resID))
{
if (resTypeID != PortabilityLayer::ResTypeID('PICT') && resTypeID != PortabilityLayer::ResTypeID('snd '))
continue;
if (isFirstResource)
{
// Seems to want this much scratch space...
uint8_t headerData[256];
memset(headerData, 0, sizeof(headerData));
if (!stream->WriteExact(headerData, sizeof(headerData)))
return ExportHouseResults::kIOError;
resForkDataStart = stream->Tell();
isFirstResource = false;
}
SimpleResource res;
bool isPurgeable = true;
res.m_name.Set(0, nullptr);
res.m_resourceID = resID;
res.m_resType = resTypeID;
res.m_attributes = 0;
res.m_offsetInResData = stream->Tell() - resForkDataStart;
if (isPurgeable)
res.m_attributes |= (1 << 5);
if (!resources.Append(static_cast<SimpleResource&&>(res)))
{
iterator->Destroy();
return ExportHouseResults::kMemError;
}
GpVector<uint8_t> resData(alloc);
ExportHouseResult_t exportResResult = TryExportResource(resData, resArchive, resTypeID, resID);
if (exportResResult != ExportHouseResults::kOK)
return exportResResult;
BEUInt32_t packedLen(static_cast<uint32_t>(resData.Count()));
if (!stream->WriteExact(&packedLen, sizeof(packedLen)))
{
iterator->Destroy();
return ExportHouseResults::kIOError;
}
if (resData.Count() > 0)
{
if (!stream->WriteExact(&resData[0], resData.Count()))
{
iterator->Destroy();
return ExportHouseResults::kIOError;
}
}
const unsigned int unpaddedExcess = ((stream->Tell() - resForkStart) & 0x3);
if (unpaddedExcess > 0)
{
uint8_t padding[4] = { 0, 0, 0, 0 };
if (!stream->WriteExact(padding, 4 - unpaddedExcess))
return ExportHouseResults::kIOError;
}
}
iterator->Destroy();
if (!resources.Count())
return ExportHouseResults::kOK;
GpVector<PortabilityLayer::ResTypeID> uniqueResTypes(alloc);
GpVector<unsigned int> resTypeCounts(alloc);
// Generate res map
for (size_t i = 0; i < resources.Count(); i++)
{
const SimpleResource &res = resources[i];
size_t uniqueResTypeIndex = uniqueResTypes.Count();
for (size_t uri = 0; uri < uniqueResTypes.Count(); uri++)
{
if (uniqueResTypes[uri] == res.m_resType)
{
uniqueResTypeIndex = uri;
break;
}
}
if (uniqueResTypeIndex == uniqueResTypes.Count())
{
if (!uniqueResTypes.Append(res.m_resType))
return ExportHouseResults::kMemError;
if (!resTypeCounts.Append(1))
return ExportHouseResults::kMemError;
}
else
resTypeCounts[uniqueResTypeIndex]++;
}
const GpUFilePos_t resMapPos = stream->Tell();
const GpUFilePos_t resDataSize = resMapPos - resForkDataStart;
// Reserved space for resource header copy (16), handle to next res map (4), file ref number (2)
{
char resHeaderCopy[22];
memset(resHeaderCopy, 0, sizeof(resHeaderCopy));
if (!stream->WriteExact(resHeaderCopy, sizeof(resHeaderCopy)))
return ExportHouseResults::kIOError;
}
uint16_t resForkAttributes = 0; // We don't use any of these
const size_t typeListEntrySize = 8;
const size_t refListEntrySize = 12;
const size_t resourceTypeListStartLoc = 28;
const size_t resourceTypeListSize = 2 + uniqueResTypes.Count() * typeListEntrySize;
const size_t resourceRefListStartLoc = resourceTypeListStartLoc + resourceTypeListSize;
const size_t resourceNameListStartLoc = resourceRefListStartLoc + resources.Count() * refListEntrySize;
struct ResForkHeaderData
{
BEUInt16_t m_attributes;
BEUInt16_t m_resourceTypeListStartLoc;
BEUInt16_t m_resourceNameListStartLoc;
BEUInt16_t m_numResTypesMinusOne;
};
ResForkHeaderData headerData;
headerData.m_attributes = resForkAttributes;
headerData.m_resourceTypeListStartLoc = static_cast<uint16_t>(resourceTypeListStartLoc);
headerData.m_resourceNameListStartLoc = static_cast<uint16_t>(resourceNameListStartLoc);
headerData.m_numResTypesMinusOne = static_cast<uint16_t>(uniqueResTypes.Count() - 1);
if (!stream->WriteExact(&headerData, sizeof(headerData)))
return ExportHouseResults::kIOError;
GpVector<size_t> refListStartForType(alloc);
if (!refListStartForType.Resize(resTypeCounts.Count()))
return ExportHouseResults::kMemError;
if (resTypeCounts.Count() > 0)
{
refListStartForType[0] = 0;
for (size_t i = 1; i < refListStartForType.Count(); i++)
refListStartForType[i] = refListStartForType[i - 1] + resTypeCounts[i - 1];
}
struct ResTypeData
{
char m_resType[4];
BEUInt16_t m_resCountMinusOne;
BEUInt16_t m_refListStart;
};
// Write resource type list
for (size_t i = 0; i < uniqueResTypes.Count(); i++)
{
ResTypeData resTypeData;
uniqueResTypes[i].ExportAsChars(resTypeData.m_resType);
resTypeData.m_resCountMinusOne = resTypeCounts[i] - 1;
resTypeData.m_refListStart = static_cast<uint16_t>(refListStartForType[i] * refListEntrySize + resourceTypeListSize);
if (!stream->WriteExact(&resTypeData, sizeof(resTypeData)))
return ExportHouseResults::kIOError;
}
struct RefListEntry
{
BEInt16_t m_resID;
BEInt16_t m_nameOffset;
uint8_t m_attribs;
uint8_t m_resDataStart[3];
BEUInt32_t m_reserved;
};
// Write reference lists
for (size_t ti = 0; ti < uniqueResTypes.Count(); ti++)
{
PortabilityLayer::ResTypeID resType = uniqueResTypes[ti];
for (size_t i = 0; i < resources.Count(); i++)
{
const SimpleResource &res = resources[i];
if (res.m_resType != resType)
continue;
RefListEntry refListEntry;
refListEntry.m_resID = static_cast<int16_t>(res.m_resourceID);
refListEntry.m_nameOffset = -1;
refListEntry.m_attribs = res.m_attributes;
const size_t resDataStart = res.m_offsetInResData;
refListEntry.m_resDataStart[0] = static_cast<uint8_t>((resDataStart >> 16) & 0xff);
refListEntry.m_resDataStart[1] = static_cast<uint8_t>((resDataStart >> 8) & 0xff);
refListEntry.m_resDataStart[2] = static_cast<uint8_t>((resDataStart >> 0) & 0xff);
refListEntry.m_reserved = 0;
if (!stream->WriteExact(&refListEntry, sizeof(refListEntry)))
return ExportHouseResults::kIOError;
}
}
const GpUFilePos_t resForkEnd = stream->Tell();
const GpUFilePos_t resMapSize = resForkEnd - resMapPos;
struct ResForkHeader
{
BEUInt32_t m_resForkDataStart;
BEUInt32_t m_resMapPos;
BEUInt32_t m_resDataSize;
BEUInt32_t m_resMapSize;
};
ResForkHeader header;
header.m_resForkDataStart = static_cast<uint32_t>(resForkDataStart - resForkStart);
header.m_resMapPos = static_cast<uint32_t>(resMapPos - resForkStart);
header.m_resDataSize = static_cast<uint32_t>(resDataSize);
header.m_resMapSize = static_cast<uint32_t>(resMapSize);
// Write header at the start of the file
if (!stream->SeekStart(resForkHeaderPos))
return ExportHouseResults::kIOError;
if (!stream->WriteExact(&header, sizeof(header)))
return ExportHouseResults::kIOError;
// Write header at the start of the resource map
if (!stream->SeekStart(resMapPos))
return ExportHouseResults::kIOError;
if (!stream->WriteExact(&header, sizeof(header)))
return ExportHouseResults::kIOError;
// Return to the end of the file
if (!stream->SeekStart(resForkEnd))
return ExportHouseResults::kIOError;
return ExportHouseResults::kOK;
}
ExportHouseResult_t TryExportHouseToStream(GpIOStream *stream)
{
uint8_t mb2Header[PortabilityLayer::MacBinary2::kHeaderSize];
memset(mb2Header, 0, sizeof(mb2Header));
// Write MacBinary header
if (!stream->WriteExact(mb2Header, sizeof(mb2Header)))
return ExportHouseResults::kIOError;
houseType *house = *thisHouse;
const size_t houseSize = thisHouse.MMBlock()->m_size;
const size_t nRooms = house->nRooms;
const size_t houseDataSize = houseType::kBinaryDataSize + sizeof(roomType) * nRooms;
ByteSwapHouse(house, houseSize, true);
if (!stream->WriteExact(house, houseType::kBinaryDataSize))
{
ByteSwapHouse(house, houseSize, false);
return ExportHouseResults::kIOError;
}
if (!stream->WriteExact(house->rooms, sizeof(roomType) * nRooms))
{
ByteSwapHouse(house, houseSize, false);
return ExportHouseResults::kIOError;
}
ByteSwapHouse(house, houseSize, false);
char padding[128];
memset(padding, 0, sizeof(padding));
const GpUFilePos_t dataAlignExcess = stream->Tell() % 128;
if (dataAlignExcess != 0)
{
if (!stream->WriteExact(padding, 128 - dataAlignExcess))
return ExportHouseResults::kIOError;
}
const GpUFilePos_t resForkPos = stream->Tell();
// Serialize resources
if (houseResFork != nullptr)
{
ExportHouseResult_t resExportResult = TryExportResources(stream, houseResFork);
if (resExportResult != ExportHouseResults::kOK)
return resExportResult;
}
const GpUFilePos_t resForkSize = stream->Tell() - resForkPos;
const GpUFilePos_t resAlignExcess = resForkSize % 128;
if (resForkSize != 0)
{
if (!stream->WriteExact(padding, 128 - resAlignExcess))
return ExportHouseResults::kIOError;
}
PortabilityLayer::MacFileInfo fileInfo;
fileInfo.m_fileName.Set(thisHouseName[0], reinterpret_cast<const char*>(thisHouseName + 1));
fileInfo.m_commentSize = 0;
fileInfo.m_dataForkSize = static_cast<uint32_t>(houseDataSize);
fileInfo.m_resourceForkSize = resForkSize;
memcpy(fileInfo.m_properties.m_fileType, "gliH", 4);
memcpy(fileInfo.m_properties.m_fileCreator, "ozm5", 4);
fileInfo.m_properties.m_xPos = 0;
fileInfo.m_properties.m_yPos = 0;
fileInfo.m_properties.m_finderFlags = 0;
fileInfo.m_properties.m_protected = 0;
fileInfo.m_properties.m_createdTimeMacEpoch = fileInfo.m_properties.m_modifiedTimeMacEpoch = PLDrivers::GetSystemServices()->GetTime();
PortabilityLayer::MacBinary2::SerializeHeader(mb2Header, fileInfo);
if (!stream->SeekStart(0))
return ExportHouseResults::kIOError;
if (!stream->WriteExact(mb2Header, PortabilityLayer::MacBinary2::kHeaderSize))
return ExportHouseResults::kIOError;
return ExportHouseResults::kOK;
}
ExportHouseResult_t TryExportHouse(void)
{
GpIOStream *stream = nullptr;
if (PortabilityLayer::FileManager::GetInstance()->OpenNonCompositeFile(PortabilityLayer::VirtualDirectories::kSourceExport, thisHouseName, ".bin", PortabilityLayer::EFilePermission_Write, GpFileCreationDispositions::kCreateOrOverwrite, stream))
return ExportHouseResults::kStreamFailed;
ExportHouseResult_t result = TryExportHouseToStream(stream);
stream->Close();
return result;
}
void ExportHouse(void)
{
ExportHouseResult_t result = TryExportHouse();
switch (result)
{
case ExportHouseResults::kOK:
break;
case ExportHouseResults::kMemError:
YellowAlert(kYellowNoMemory, 0);
break;
case ExportHouseResults::kInternalError:
YellowAlert(kYellowUnaccounted, 0);
break;
case ExportHouseResults::kIOError:
case ExportHouseResults::kStreamFailed:
YellowAlert(kYellowFailedWrite, 0);
break;
case ExportHouseResults::kResourceError:
YellowAlert(kYellowFailedResOpen, 0);
break;
}
}
ExportHouseResult_t TryDownloadHouseToStream(GpIOStream *stream)
{
PortabilityLayer::MacFileProperties mfp;
mfp.m_createdTimeMacEpoch = PLDrivers::GetSystemServices()->GetTime();
memcpy(mfp.m_fileCreator, "ozm5", 4);
memcpy(mfp.m_fileType, "gliH", 4);
mfp.m_finderFlags = 0;
mfp.m_modifiedTimeMacEpoch = mfp.m_createdTimeMacEpoch;
mfp.m_protected = 0;
mfp.m_xPos = 0;
mfp.m_yPos = 0;
PortabilityLayer::MacFilePropertiesSerialized mfps;
mfps.Serialize(mfp);
unsigned int year, month, day, hour, minute, second;
PortabilityLayer::CombinedTimestamp ts;
PLDrivers::GetSystemServices()->GetLocalDateTime(year, month, day, hour, minute, second);
ts.SetLocalYear(year);
ts.m_localDay = day;
ts.m_localHour = hour;
ts.m_localMinute = minute;
ts.m_localMonth = month;
ts.m_localSecond = second;
uint16_t dosDate, dosTime;
ts.GetAsMSDOSTimestamp(dosDate, dosTime);
const uint32_t metaSize = sizeof(mfps.m_data);
const uint32_t metaCRC = PortabilityLayer::DeflateContext::CRC32(0, mfps.m_data, metaSize);
const char *metaPackagedName = PortabilityLayer::MacFilePropertiesSerialized::GetPackagedName();
GpUFilePos_t metaLHPos = 0;
PortabilityLayer::ZipFileLocalHeader metaLH;
metaLH.m_signature = PortabilityLayer::ZipFileLocalHeader::kSignature;
metaLH.m_versionRequired = PortabilityLayer::ZipConstants::kStoredRequiredVersion;
metaLH.m_flags = 0;
metaLH.m_method = PortabilityLayer::ZipConstants::kStoredMethod;
metaLH.m_modificationTime = dosTime;
metaLH.m_modificationDate = dosDate;
metaLH.m_crc = metaCRC;
metaLH.m_compressedSize = metaSize;
metaLH.m_uncompressedSize = metaSize;
metaLH.m_fileNameLength = strlen(metaPackagedName);
metaLH.m_extraFieldLength = 0;
if (!stream->WriteExact(&metaLH, sizeof(metaLH)))
return ExportHouseResults::kIOError;
if (!stream->WriteExact(metaPackagedName, strlen(metaPackagedName)))
return ExportHouseResults::kIOError;
if (!stream->WriteExact(mfps.m_data, metaSize))
return ExportHouseResults::kIOError;
houseType *house = *thisHouse;
const size_t houseSize = thisHouse.MMBlock()->m_size;
const size_t nRooms = house->nRooms;
const size_t houseDataSize = houseType::kBinaryDataSize + sizeof(roomType) * nRooms;
ByteSwapHouse(house, houseSize, true);
uint32_t houseCRC = PortabilityLayer::DeflateContext::CRC32(0, house, houseType::kBinaryDataSize);
houseCRC = PortabilityLayer::DeflateContext::CRC32(houseCRC, house->rooms, sizeof(roomType) * nRooms);
const uint32_t totalhouseSize = houseType::kBinaryDataSize + sizeof(roomType) * nRooms;
GpUFilePos_t houseLHPos = 0;
const char *dataPackagedName = "!data";
PortabilityLayer::ZipFileLocalHeader houseLH;
houseLH.m_signature = PortabilityLayer::ZipFileLocalHeader::kSignature;
houseLH.m_versionRequired = PortabilityLayer::ZipConstants::kStoredRequiredVersion;
houseLH.m_flags = 0;
houseLH.m_method = PortabilityLayer::ZipConstants::kStoredMethod;
houseLH.m_modificationTime = dosTime;
houseLH.m_modificationDate = dosDate;
houseLH.m_crc = houseCRC;
houseLH.m_compressedSize = totalhouseSize;
houseLH.m_uncompressedSize = totalhouseSize;
houseLH.m_fileNameLength = strlen(dataPackagedName);
houseLH.m_extraFieldLength = 0;
if (!stream->WriteExact(&houseLH, sizeof(houseLH)))
{
ByteSwapHouse(house, houseSize, false);
return ExportHouseResults::kIOError;
}
if (!stream->WriteExact(dataPackagedName, strlen(dataPackagedName)))
{
ByteSwapHouse(house, houseSize, false);
return ExportHouseResults::kIOError;
}
if (!stream->WriteExact(house, houseType::kBinaryDataSize))
{
ByteSwapHouse(house, houseSize, false);
return ExportHouseResults::kIOError;
}
if (!stream->WriteExact(house->rooms, sizeof(roomType) * nRooms))
{
ByteSwapHouse(house, houseSize, false);
return ExportHouseResults::kIOError;
}
ByteSwapHouse(house, houseSize, false);
GpUFilePos_t cdirStart = stream->Tell();
PortabilityLayer::ZipCentralDirectoryFileHeader metaCDir;
metaCDir.m_signature = PortabilityLayer::ZipCentralDirectoryFileHeader::kSignature;
metaCDir.m_versionCreated = PortabilityLayer::ZipConstants::kCompressedRequiredVersion;;
metaCDir.m_versionRequired = PortabilityLayer::ZipConstants::kStoredRequiredVersion;
metaCDir.m_flags = 0;
metaCDir.m_method = PortabilityLayer::ZipConstants::kStoredMethod;
metaCDir.m_modificationTime = dosTime;
metaCDir.m_modificationDate = dosDate;
metaCDir.m_crc = metaCRC;
metaCDir.m_compressedSize = metaSize;
metaCDir.m_uncompressedSize = metaSize;
metaCDir.m_fileNameLength = strlen(metaPackagedName);
metaCDir.m_extraFieldLength = 0;
metaCDir.m_commentLength = 0;
metaCDir.m_diskNumber = 0;
metaCDir.m_internalAttributes = 0;
metaCDir.m_externalAttributes = PortabilityLayer::ZipConstants::kArchivedAttributes;
metaCDir.m_localHeaderOffset = static_cast<uint32_t>(metaLHPos);
if (!stream->WriteExact(&metaCDir, sizeof(metaCDir)))
return ExportHouseResults::kIOError;
if (!stream->WriteExact(metaPackagedName, strlen(metaPackagedName)))
return ExportHouseResults::kIOError;
PortabilityLayer::ZipCentralDirectoryFileHeader dataCDir;
dataCDir.m_signature = PortabilityLayer::ZipCentralDirectoryFileHeader::kSignature;
dataCDir.m_versionCreated = PortabilityLayer::ZipConstants::kCompressedRequiredVersion;;
dataCDir.m_versionRequired = PortabilityLayer::ZipConstants::kStoredRequiredVersion;
dataCDir.m_flags = 0;
dataCDir.m_method = PortabilityLayer::ZipConstants::kStoredMethod;
dataCDir.m_modificationTime = dosTime;
dataCDir.m_modificationDate = dosDate;
dataCDir.m_crc = metaCRC;
dataCDir.m_compressedSize = houseDataSize;
dataCDir.m_uncompressedSize = houseDataSize;
dataCDir.m_fileNameLength = strlen(dataPackagedName);
dataCDir.m_extraFieldLength = 0;
dataCDir.m_commentLength = 0;
dataCDir.m_diskNumber = 0;
dataCDir.m_internalAttributes = 0;
dataCDir.m_externalAttributes = PortabilityLayer::ZipConstants::kArchivedAttributes;
dataCDir.m_localHeaderOffset = static_cast<uint32_t>(houseLHPos);
if (!stream->WriteExact(&dataCDir, sizeof(dataCDir)))
return ExportHouseResults::kIOError;
if (!stream->WriteExact(dataPackagedName, strlen(dataPackagedName)))
return ExportHouseResults::kIOError;
PortabilityLayer::ZipEndOfCentralDirectoryRecord eocd;
eocd.m_signature = PortabilityLayer::ZipEndOfCentralDirectoryRecord::kSignature;
eocd.m_thisDiskNumber = 0;
eocd.m_centralDirDisk = 0;
eocd.m_numCentralDirRecordsThisDisk = 2;
eocd.m_numCentralDirRecords = 2;
eocd.m_centralDirectorySizeBytes = static_cast<uint32_t>(stream->Tell() - cdirStart);
eocd.m_centralDirStartOffset = static_cast<uint32_t>(cdirStart);
eocd.m_commentLength = 0;
if (!stream->WriteExact(&eocd, sizeof(eocd)))
return ExportHouseResults::kIOError;
return ExportHouseResults::kOK;
}
ExportHouseResult_t TryDownloadHouse(void)
{
GpIOStream *stream = nullptr;
if (PortabilityLayer::FileManager::GetInstance()->OpenNonCompositeFile(PortabilityLayer::VirtualDirectories::kSourceExport, thisHouseName, ".gpf", PortabilityLayer::EFilePermission_Write, GpFileCreationDispositions::kCreateOrOverwrite, stream))
return ExportHouseResults::kStreamFailed;
ExportHouseResult_t result = TryDownloadHouseToStream(stream);
stream->Close();
return result;
}
void DownloadHouse(void)
{
ExportHouseResult_t result = TryDownloadHouse();
switch (result)
{
case ExportHouseResults::kOK:
break;
case ExportHouseResults::kMemError:
YellowAlert(kYellowNoMemory, 0);
break;
case ExportHouseResults::kInternalError:
YellowAlert(kYellowUnaccounted, 0);
break;
case ExportHouseResults::kIOError:
case ExportHouseResults::kStreamFailed:
YellowAlert(kYellowFailedWrite, 0);
break;
case ExportHouseResults::kResourceError:
YellowAlert(kYellowFailedResOpen, 0);
break;
}
}