Files
Aerofoil/gpr2gpa/gpr2gpa.cpp

865 lines
25 KiB
C++

#include "BMPFormat.h"
#include "CFileStream.h"
#include "GPArchive.h"
#include "MemReaderStream.h"
#include "QDPictDecoder.h"
#include "QDPictEmitContext.h"
#include "QDPictEmitScanlineParameters.h"
#include "MacFileInfo.h"
#include "ResourceFile.h"
#include "ResourceCompiledTypeList.h"
#include "SharedTypes.h"
#include "ZipFile.h"
#include "WaveFormat.h"
#include "zlib.h"
#include <stdio.h>
#include <vector>
#include <Windows.h>
struct PlannedEntry
{
std::vector<uint8_t> m_contents;
std::string m_name;
bool m_isDirectory;
PlannedEntry()
: m_isDirectory(false)
{
}
};
template<class T>
void VectorAppend(std::vector<T> &vec, const T *items, size_t numItems)
{
if (numItems == 0)
return;
vec.resize(vec.size() + numItems);
T *outLoc = &vec[vec.size() - numItems];
for (size_t i = 0; i < numItems; i++)
outLoc[i] = items[i];
}
uint8_t FiveToEight(uint8_t v)
{
return static_cast<uint8_t>((v << 3) | (v >> 2));
}
bool TryDeflate(const std::vector<uint8_t> &uncompressed, std::vector<uint8_t> &outCompressed)
{
if (uncompressed.size() == 0)
return false;
const unsigned int bufferSize = 1024;
z_stream stream;
stream.zalloc = Z_NULL;
stream.zfree = Z_NULL;
stream.opaque = Z_NULL;
int ret = deflateInit2(&stream, 9, Z_DEFLATED, -15, 9, Z_DEFAULT_STRATEGY);
if (ret != Z_OK)
return false;
uint8_t buffer[bufferSize];
stream.next_in = const_cast<unsigned char*>(&uncompressed[0]);
stream.avail_in = uncompressed.size();
stream.next_out = buffer;
stream.avail_out = bufferSize;
for (;;)
{
int deflateResult = deflate(&stream, Z_FINISH);
size_t newDataSize = stream.next_out - buffer;
if (newDataSize > 0)
{
outCompressed.resize(outCompressed.size() + newDataSize);
memcpy(&outCompressed[outCompressed.size() - newDataSize], buffer, newDataSize);
stream.next_out = buffer;
stream.avail_out = bufferSize;
}
if (deflateResult == Z_STREAM_END)
break;
}
deflateEnd(&stream);
return true;
}
void ConvertToMSDOSTimestamp(int64_t timestamp, uint16_t &msdosDate, uint16_t &msdosTime)
{
SYSTEMTIME epochStart;
epochStart.wYear = 1904;
epochStart.wMonth = 1;
epochStart.wDayOfWeek = 5;
epochStart.wDay = 1;
epochStart.wHour = 0;
epochStart.wMinute = 0;
epochStart.wSecond = 0;
epochStart.wMilliseconds = 0;
FILETIME epochStartFT;
SystemTimeToFileTime(&epochStart, &epochStartFT);
int64_t epochStart64 = (static_cast<int64_t>(epochStartFT.dwLowDateTime) & 0xffffffff) | (static_cast<int64_t>(epochStartFT.dwHighDateTime) << 32);
int64_t offsetDate64 = (epochStart64 + timestamp * 10000000);
FILETIME utcTimestampFT;
utcTimestampFT.dwLowDateTime = static_cast<DWORD>(offsetDate64 & 0xffffffff);
utcTimestampFT.dwHighDateTime = static_cast<DWORD>((offsetDate64 >> 32) & 0xffffffff);
TIME_ZONE_INFORMATION tzInfo;
GetTimeZoneInformation(&tzInfo);
SYSTEMTIME utcTimestampST;
FileTimeToSystemTime(&utcTimestampFT, &utcTimestampST);
SYSTEMTIME localTimestampST;
SystemTimeToTzSpecificLocalTime(&tzInfo, &utcTimestampST, &localTimestampST);
DWORD yearsSince1980 = localTimestampST.wYear - 1980;
if (yearsSince1980 < 0)
{
// Time machine
yearsSince1980 = 0;
localTimestampST.wSecond = 0;
localTimestampST.wMinute = 0;
localTimestampST.wHour = 0;
localTimestampST.wDay = 1;
localTimestampST.wMonth = 1;
}
else if (yearsSince1980 > 127)
{
// I was promised flying cars, but it's 2107 and you're still flying paper airplanes...
yearsSince1980 = 127;
localTimestampST.wSecond = 59;
localTimestampST.wMinute = 59;
localTimestampST.wHour = 23;
localTimestampST.wDay = 31;
localTimestampST.wMonth = 12;
}
msdosTime = (localTimestampST.wSecond / 2) | (localTimestampST.wMinute << 5) | (localTimestampST.wHour << 11);
msdosDate = localTimestampST.wDay | (localTimestampST.wMonth << 5) | (yearsSince1980 << 9);
}
void ExportZipFile(const char *path, const std::vector<PlannedEntry> &entries, const PortabilityLayer::MacFileProperties &mfp)
{
FILE *outF = nullptr;
if (fopen_s(&outF, path, "wb"))
{
fprintf(stderr, "Error opening output path");
return;
}
uint16_t msdosModificationTime = 0;
uint16_t msdosModificationDate = 0;
ConvertToMSDOSTimestamp(mfp.m_modifiedDate, msdosModificationDate, msdosModificationTime);
std::vector<PortabilityLayer::ZipCentralDirectoryFileHeader> cdirRecords;
for (const PlannedEntry &entry : entries)
{
std::vector<uint8_t> compressed;
if (entry.m_contents.size() != 0)
{
if (!TryDeflate(entry.m_contents, compressed))
compressed.resize(0);
if (compressed.size() >= entry.m_contents.size())
compressed.resize(0);
}
bool isCompressed = compressed.size() != 0;
PortabilityLayer::ZipCentralDirectoryFileHeader cdirHeader;
cdirHeader.m_signature = PortabilityLayer::ZipCentralDirectoryFileHeader::kSignature;
cdirHeader.m_versionCreated = PortabilityLayer::ZipConstants::kCompressedRequiredVersion;
cdirHeader.m_versionRequired = PortabilityLayer::ZipConstants::kStoredRequiredVersion;
cdirHeader.m_flags = 0;
cdirHeader.m_method = isCompressed ? PortabilityLayer::ZipConstants::kDeflatedMethod : PortabilityLayer::ZipConstants::kStoredMethod;
cdirHeader.m_modificationTime = msdosModificationTime;
cdirHeader.m_modificationDate = msdosModificationDate;
cdirHeader.m_crc = 0;
if (entry.m_isDirectory)
cdirHeader.m_versionRequired = PortabilityLayer::ZipConstants::kDirectoryRequiredVersion;
else if (isCompressed)
cdirHeader.m_versionRequired = PortabilityLayer::ZipConstants::kCompressedRequiredVersion;
if (entry.m_contents.size() > 0)
cdirHeader.m_crc = crc32(0, &entry.m_contents[0], static_cast<uint32_t>(entry.m_contents.size()));
cdirHeader.m_compressedSize = static_cast<uint32_t>(isCompressed ? compressed.size() : entry.m_contents.size());
cdirHeader.m_uncompressedSize = static_cast<uint32_t>(entry.m_contents.size());
cdirHeader.m_fileNameLength = static_cast<uint32_t>(entry.m_name.size());
cdirHeader.m_extraFieldLength = 0;
cdirHeader.m_commentLength = 0;
cdirHeader.m_diskNumber = 0;
cdirHeader.m_internalAttributes = 0;
cdirHeader.m_externalAttributes = entry.m_isDirectory ? PortabilityLayer::ZipConstants::kDirectoryAttributes : PortabilityLayer::ZipConstants::kArchivedAttributes;
cdirHeader.m_localHeaderOffset = ftell(outF);
cdirRecords.push_back(cdirHeader);
PortabilityLayer::ZipFileLocalHeader localHeader;
localHeader.m_signature = PortabilityLayer::ZipFileLocalHeader::kSignature;
localHeader.m_versionRequired = cdirHeader.m_versionRequired;
localHeader.m_flags = 0;
localHeader.m_method = cdirHeader.m_method;
localHeader.m_modificationTime = cdirHeader.m_modificationTime;
localHeader.m_modificationDate = cdirHeader.m_modificationDate;
localHeader.m_crc = cdirHeader.m_crc;
localHeader.m_compressedSize = cdirHeader.m_compressedSize;
localHeader.m_uncompressedSize = cdirHeader.m_uncompressedSize;
localHeader.m_fileNameLength = cdirHeader.m_fileNameLength;
localHeader.m_extraFieldLength = 0;
fwrite(&localHeader, 1, sizeof(localHeader), outF);
fwrite(entry.m_name.c_str(), 1, entry.m_name.size(), outF);
if (isCompressed)
fwrite(&compressed[0], 1, compressed.size(), outF);
else if (entry.m_contents.size() > 0)
fwrite(&entry.m_contents[0], 1, entry.m_contents.size(), outF);
}
long cdirPos = ftell(outF);
for (size_t i = 0; i < entries.size(); i++)
{
fwrite(&cdirRecords[i], 1, sizeof(PortabilityLayer::ZipCentralDirectoryFileHeader), outF);
fwrite(entries[i].m_name.c_str(), 1, entries[i].m_name.size(), outF);
}
long cdirEndPos = ftell(outF);
PortabilityLayer::ZipEndOfCentralDirectoryRecord endRecord;
endRecord.m_signature = PortabilityLayer::ZipEndOfCentralDirectoryRecord::kSignature;
endRecord.m_thisDiskNumber = 0;
endRecord.m_centralDirDisk = 0;
endRecord.m_numCentralDirRecordsThisDisk = static_cast<uint32_t>(entries.size());
endRecord.m_numCentralDirRecords = static_cast<uint32_t>(entries.size());
endRecord.m_centralDirectorySizeBytes = cdirEndPos - cdirPos;
endRecord.m_centralDirStartOffset = cdirPos;
endRecord.m_commentLength = 0;
fwrite(&endRecord, 1, sizeof(endRecord), outF);
fclose(outF);
}
class BMPDumperContext : public PortabilityLayer::QDPictEmitContext
{
public:
bool SpecifyFrame(const Rect &rect) override;
Rect ConstrainRegion(const Rect &rect) const override;
void Start(PortabilityLayer::QDPictBlitSourceType sourceType, const PortabilityLayer::QDPictEmitScanlineParameters &params) override;
void BlitScanlineAndAdvance(const void *) override;
bool AllocTempBuffers(uint8_t *&buffer1, size_t buffer1Size, uint8_t *&buffer2, size_t buffer2Size) override;
bool Export(std::vector<uint8_t> &outData) const;
private:
std::vector<PortabilityLayer::RGBAColor> m_pixelData;
size_t m_blitOrigin;
size_t m_pitchInElements;
Rect m_frame;
PortabilityLayer::QDPictEmitScanlineParameters m_blitParams;
PortabilityLayer::QDPictBlitSourceType m_blitSourceType;
std::vector<uint8_t> m_tempBuffers;
};
bool BMPDumperContext::SpecifyFrame(const Rect &rect)
{
if (!rect.IsValid())
return false;
m_frame = rect;
m_pitchInElements = rect.Width();
m_pixelData.resize(m_pitchInElements * rect.Height());
for (PortabilityLayer::RGBAColor &color : m_pixelData)
color = PortabilityLayer::RGBAColor::Create(0, 0, 0, 255);
return true;
}
Rect BMPDumperContext::ConstrainRegion(const Rect &rect) const
{
return m_frame.Intersect(rect);
}
void BMPDumperContext::Start(PortabilityLayer::QDPictBlitSourceType sourceType, const PortabilityLayer::QDPictEmitScanlineParameters &params)
{
m_blitSourceType = sourceType;
m_blitParams = params;
int32_t relativeLeft = params.m_constrainedRegionLeft - m_frame.left;
int32_t relativeTop = params.m_firstY - m_frame.top;
m_blitOrigin = (static_cast<uint32_t>(relativeTop) * m_frame.Width()) + static_cast<uint32_t>(relativeLeft);
}
void BMPDumperContext::BlitScanlineAndAdvance(const void *scanlineData)
{
const uint8_t *scanlineBytes = static_cast<const uint8_t *>(scanlineData);
const size_t rowSize = m_blitParams.m_constrainedRegionRight - m_blitParams.m_constrainedRegionLeft;
PortabilityLayer::RGBAColor *outRowStart = &m_pixelData[m_blitOrigin];
m_blitOrigin += m_pitchInElements;
const size_t planarSeparation = m_blitParams.m_planarSeparation;
const size_t firstSrcCol = static_cast<size_t>(m_blitParams.m_constrainedRegionLeft - m_blitParams.m_scanlineOriginX);
switch (m_blitSourceType)
{
case PortabilityLayer::QDPictBlitSourceType_1Bit:
for (size_t i = 0; i < rowSize; i++)
{
const size_t originCol = i + firstSrcCol;
if (scanlineBytes[originCol / 8] & (0x80 >> (originCol & 7)))
outRowStart[i] = PortabilityLayer::RGBAColor::Create(0, 0, 0, 255);
else
outRowStart[i] = PortabilityLayer::RGBAColor::Create(255, 255, 255, 255);
}
break;
case PortabilityLayer::QDPictBlitSourceType_Indexed1Bit:
for (size_t i = 0; i < rowSize; i++)
{
const size_t originCol = i + firstSrcCol;
const unsigned int colorIndex = (scanlineBytes[originCol / 8] >> (8 - ((originCol & 7) + 1) * 1)) & 1;
outRowStart[i] = m_blitParams.m_colors[colorIndex];
}
break;
case PortabilityLayer::QDPictBlitSourceType_Indexed2Bit:
for (size_t i = 0; i < rowSize; i++)
{
const size_t originCol = i + firstSrcCol;
const unsigned int colorIndex = (scanlineBytes[originCol / 4] >> (8 - ((originCol & 3) + 1) * 2)) & 3;
outRowStart[i] = m_blitParams.m_colors[colorIndex];
}
break;
case PortabilityLayer::QDPictBlitSourceType_Indexed4Bit:
for (size_t i = 0; i < rowSize; i++)
{
const size_t originCol = i + firstSrcCol;
const unsigned int colorIndex = (scanlineBytes[originCol / 2] >> (8 - ((originCol & 1) + 1) * 4)) & 15;
outRowStart[i] = m_blitParams.m_colors[colorIndex];
}
break;
case PortabilityLayer::QDPictBlitSourceType_Indexed8Bit:
for (size_t i = 0; i < rowSize; i++)
{
const size_t originCol = i + firstSrcCol;
const unsigned int colorIndex = scanlineBytes[originCol];
outRowStart[i] = m_blitParams.m_colors[colorIndex];
}
break;
case PortabilityLayer::QDPictBlitSourceType_RGB15:
for (size_t i = 0; i < rowSize; i++)
{
const size_t originCol = i + firstSrcCol;
const uint16_t item = *reinterpret_cast<const uint16_t*>(scanlineBytes + originCol * 2);
PortabilityLayer::RGBAColor &outputItem = outRowStart[i];
outputItem.b = FiveToEight(item & 0x1f);
outputItem.g = FiveToEight((item >> 5) & 0x1f);
outputItem.r = FiveToEight((item >> 10) & 0x1f);
outputItem.a = 255;
}
break;
case PortabilityLayer::QDPictBlitSourceType_RGB24_Interleaved:
for (size_t i = 0; i < rowSize; i++)
{
const size_t originCol = i + firstSrcCol;
PortabilityLayer::RGBAColor &outputItem = outRowStart[i];
outputItem.r = scanlineBytes[originCol * 3 + 0];
outputItem.g = scanlineBytes[originCol * 3 + 1];
outputItem.b = scanlineBytes[originCol * 3 + 2];
outputItem.a = 255;
}
break;
case PortabilityLayer::QDPictBlitSourceType_RGB24_Multiplane:
for (size_t i = 0; i < rowSize; i++)
{
const size_t originCol = i + firstSrcCol;
PortabilityLayer::RGBAColor &outputItem = outRowStart[i];
outputItem.r = scanlineBytes[originCol];
outputItem.g = scanlineBytes[originCol + planarSeparation];
outputItem.b = scanlineBytes[originCol + planarSeparation * 2];
outputItem.a = 255;
}
break;
}
}
bool BMPDumperContext::AllocTempBuffers(uint8_t *&buffer1, size_t buffer1Size, uint8_t *&buffer2, size_t buffer2Size)
{
m_tempBuffers.resize(buffer1Size + buffer2Size);
if (m_tempBuffers.size() == 0)
{
buffer1 = nullptr;
buffer2 = nullptr;
}
else
{
buffer1 = &m_tempBuffers[0];
buffer2 = buffer1 + buffer1Size;
}
return true;
}
bool BMPDumperContext::Export(std::vector<uint8_t> &outData) const
{
outData.resize(0);
bool couldBe15Bit = true;
bool couldBeIndexed = true;
PortabilityLayer::BitmapColorTableEntry colorTable[256];
unsigned int numColors = 0;
const size_t height = m_frame.Height();
const size_t width = m_frame.Width();
const size_t pitch = m_pitchInElements;
for (size_t row = 0; row < height; row++)
{
const PortabilityLayer::RGBAColor *rowData = &m_pixelData[m_pitchInElements * row];
for (size_t col = 0; col < width; col++)
{
const PortabilityLayer::RGBAColor &pixel = rowData[col];
if (couldBe15Bit)
{
if (FiveToEight(pixel.r >> 3) != pixel.r || FiveToEight(pixel.g >> 3) != pixel.g || FiveToEight(pixel.b >> 3) != pixel.b)
{
couldBe15Bit = false;
if (!couldBeIndexed)
break;
}
}
if (couldBeIndexed)
{
bool matched = false;
for (unsigned int ci = 0; ci < numColors; ci++)
{
const PortabilityLayer::BitmapColorTableEntry &ctabEntry = colorTable[ci];
if (ctabEntry.m_r == pixel.r && ctabEntry.m_g == pixel.g && ctabEntry.m_b == pixel.b)
{
matched = true;
break;
}
}
if (matched == false)
{
if (numColors == 256)
{
couldBeIndexed = false;
if (!couldBe15Bit)
break;
}
else
{
PortabilityLayer::BitmapColorTableEntry &ctabEntry = colorTable[numColors++];
ctabEntry.m_r = pixel.r;
ctabEntry.m_g = pixel.g;
ctabEntry.m_b = pixel.b;
ctabEntry.m_reserved = 0;
}
}
}
}
if (!couldBeIndexed && !couldBe15Bit)
break;
}
unsigned int bpp = 24;
if (couldBeIndexed)
{
if (numColors <= 2)
bpp = 1;
else if (numColors <= 16)
bpp = 4;
else
bpp = 8;
}
else if (couldBe15Bit)
bpp = 16;
const size_t minimalBitsPerRow = bpp * width;
const size_t rowPitchBytes = ((minimalBitsPerRow + 31) / 32) * 4; // DWORD alignment
const size_t colorTableSize = (bpp < 16) ? numColors * 4 : 0;
const size_t fileHeaderSize = sizeof(PortabilityLayer::BitmapFileHeader);
const size_t infoHeaderSize = sizeof(PortabilityLayer::BitmapInfoHeader);
const size_t ctabSize = (bpp < 16) ? (numColors * 4) : 0;
const size_t imageDataSize = rowPitchBytes * height;
const size_t postCTabPaddingSize = 2;
const size_t imageFileSize = fileHeaderSize + infoHeaderSize + ctabSize + postCTabPaddingSize + imageDataSize;
outData.reserve(imageFileSize);
PortabilityLayer::BitmapFileHeader fileHeader;
fileHeader.m_id[0] = 'B';
fileHeader.m_id[1] = 'M';
fileHeader.m_fileSize = static_cast<uint32_t>(imageFileSize);
fileHeader.m_imageDataStart = static_cast<uint32_t>(fileHeaderSize + infoHeaderSize + ctabSize + postCTabPaddingSize);
fileHeader.m_reserved1 = 0;
fileHeader.m_reserved2 = 0;
VectorAppend(outData, reinterpret_cast<const uint8_t*>(&fileHeader), sizeof(fileHeader));
PortabilityLayer::BitmapInfoHeader infoHeader;
infoHeader.m_thisStructureSize = sizeof(infoHeader);
infoHeader.m_width = static_cast<uint32_t>(width);
infoHeader.m_height = static_cast<uint32_t>(height);
infoHeader.m_planes = 1;
infoHeader.m_bitsPerPixel = bpp;
infoHeader.m_compression = PortabilityLayer::BitmapConstants::kCompressionRGB;
infoHeader.m_imageSize = static_cast<uint32_t>(imageDataSize);
infoHeader.m_xPixelsPerMeter = 2835;
infoHeader.m_yPixelsPerMeter = 2835;
infoHeader.m_numColors = (bpp < 16) ? numColors : 0;
infoHeader.m_importantColorCount = 0;
VectorAppend(outData, reinterpret_cast<const uint8_t*>(&infoHeader), sizeof(infoHeader));
VectorAppend(outData, reinterpret_cast<const uint8_t*>(colorTable), sizeof(PortabilityLayer::BitmapColorTableEntry) * numColors);
for (size_t i = 0; i < postCTabPaddingSize; i++)
outData.push_back(0);
std::vector<uint8_t> rowPackData;
rowPackData.resize(rowPitchBytes);
for (size_t row = 0; row < height; row++)
{
for (size_t i = 0; i < rowPitchBytes; i++)
rowPackData[i] = 0;
const PortabilityLayer::RGBAColor *rowData = &m_pixelData[m_pitchInElements * (height - 1 - row)];
for (size_t col = 0; col < width; col++)
{
const PortabilityLayer::RGBAColor &pixel = rowData[col];
if (bpp == 24)
{
rowPackData[col * 3 + 0] = pixel.b;
rowPackData[col * 3 + 1] = pixel.g;
rowPackData[col * 3 + 2] = pixel.r;
}
else if (bpp == 16)
{
int packedValue = 0;
packedValue |= (pixel.b >> 3);
packedValue |= ((pixel.g >> 3) << 5);
packedValue |= ((pixel.r >> 3) << 10);
rowPackData[col * 2 + 0] = static_cast<uint8_t>(packedValue & 0xff);
rowPackData[col * 2 + 1] = static_cast<uint8_t>((packedValue >> 8) & 0xff);
}
else
{
unsigned int colorIndex = 0;
for (unsigned int ci = 0; ci < numColors; ci++)
{
const PortabilityLayer::BitmapColorTableEntry &ctabEntry = colorTable[ci];
if (ctabEntry.m_r == pixel.r && ctabEntry.m_g == pixel.g && ctabEntry.m_b == pixel.b)
{
colorIndex = ci;
break;
}
}
if (bpp == 8)
rowPackData[col] = colorIndex;
else if (bpp == 4)
rowPackData[col / 2] |= (colorIndex << (8 - (((col & 1) + 1) * 4)));
else if (bpp == 1)
{
if (colorIndex)
rowPackData[col / 8] |= (0x80 >> (col & 7));
}
}
}
VectorAppend(outData, &rowPackData[0], rowPackData.size());
}
return true;
}
bool ImportPICT(std::vector<uint8_t> &outBMP, const void *inData, size_t inSize)
{
PortabilityLayer::MemReaderStream stream(inData, inSize);
BMPDumperContext context;
PortabilityLayer::QDPictDecoder decoder;
if (decoder.DecodePict(&stream, &context))
{
if (context.Export(outBMP))
return true;
return false;
}
else
return false;
}
size_t PadRiffChunk(size_t sz)
{
return sz + (sz & 1);
}
void PadAlignWave(std::vector<uint8_t> &outWAV)
{
if (outWAV.size() & 1)
outWAV.push_back(0);
}
bool ImportSound(std::vector<uint8_t> &outWAV, const void *inData, size_t inSize)
{
// Glider PRO has a hard-coded expectation that the sound will have exactly 20 bytes of prefix.
// The resource format can have more than that, we'll just follow this base expectation
const size_t hardCodedPrefixSize = 20;
struct BufferHeader
{
BEUInt32_t m_samplePtr;
BEUInt32_t m_length;
BEFixed32_t m_sampleRate;
BEUInt32_t m_loopStart;
BEUInt32_t m_loopEnd;
uint8_t m_encoding;
uint8_t m_baseFrequency;
};
if (inSize < hardCodedPrefixSize)
return false;
const uint8_t *sndBufferData = static_cast<const uint8_t*>(inData) + hardCodedPrefixSize;
inSize -= hardCodedPrefixSize;
if (inSize < sizeof(BufferHeader))
return false;
BufferHeader header;
memcpy(&header, sndBufferData, sizeof(header));
sndBufferData += sizeof(header);
inSize -= sizeof(header);
uint32_t dataLength = header.m_length;
if (dataLength > inSize)
return false;
uint32_t sampleRate = header.m_sampleRate.m_intPart;
if (static_cast<int>(header.m_sampleRate.m_fracPart) >= 0x8000)
sampleRate++;
PortabilityLayer::WaveFormatChunkV1 formatChunk;
const size_t riffTagSize = sizeof(PortabilityLayer::RIFFTag);
const size_t waveMarkerSize = 4;
const size_t fmtTagSize = sizeof(PortabilityLayer::RIFFTag);
const size_t fmtContentSize = PadRiffChunk(sizeof(formatChunk));
const size_t dataTagSize = sizeof(PortabilityLayer::RIFFTag);
const size_t dataContentSize = PadRiffChunk(dataLength);
// Structure:
// riffTag
// waveMarker
// fmtTag
// fmtContent
// dataTag
// dataContent
outWAV.resize(0);
outWAV.reserve(riffTagSize + waveMarkerSize + fmtTagSize + fmtContentSize + dataTagSize + dataContentSize);
PortabilityLayer::RIFFTag riffTag;
riffTag.m_tag = PortabilityLayer::WaveConstants::kRiffChunkID;
riffTag.m_chunkSize = static_cast<uint32_t>(waveMarkerSize + fmtTagSize + fmtContentSize + dataTagSize + dataContentSize);
VectorAppend(outWAV, reinterpret_cast<const uint8_t*>(&riffTag), sizeof(riffTag));
VectorAppend(outWAV, reinterpret_cast<const uint8_t*>("WAVE"), 4);
PortabilityLayer::RIFFTag formatTag;
formatTag.m_tag = PortabilityLayer::WaveConstants::kFormatChunkID;
formatTag.m_chunkSize = sizeof(formatChunk);
VectorAppend(outWAV, reinterpret_cast<const uint8_t*>(&formatTag), sizeof(formatTag));
formatChunk.m_formatCode = PortabilityLayer::WaveConstants::kFormatPCM;
formatChunk.m_numChannels = 1;
formatChunk.m_sampleRate = sampleRate;
formatChunk.m_bytesPerSecond = sampleRate;
formatChunk.m_blockAlignmentBytes = 1; // channels * bits per sample / 8
formatChunk.m_bitsPerSample = 8;
VectorAppend(outWAV, reinterpret_cast<const uint8_t*>(&formatChunk), sizeof(formatChunk));
PadAlignWave(outWAV);
PortabilityLayer::RIFFTag dataTag;
dataTag.m_tag = PortabilityLayer::WaveConstants::kDataChunkID;
dataTag.m_chunkSize = dataLength;
VectorAppend(outWAV, reinterpret_cast<const uint8_t*>(&dataTag), sizeof(dataTag));
VectorAppend(outWAV, sndBufferData, dataLength);
PadAlignWave(outWAV);
return true;
}
int main(int argc, const char **argv)
{
if (argc != 3)
{
fprintf(stderr, "Usage: gpr2gpa <prefix> <output.gpa>");
return -1;
}
std::string base = argv[1];
std::string metadataPath = base + ".gpf";
std::string resPath = base + ".gpr";
FILE *inF = nullptr;
if (fopen_s(&inF, resPath.c_str(), "rb"))
{
fprintf(stderr, "Error opening input file");
return -1;
}
FILE *metaF = nullptr;
if (fopen_s(&metaF, metadataPath.c_str(), "rb"))
{
fprintf(stderr, "Error opening metadata file");
return -1;
}
PortabilityLayer::MacFilePropertiesSerialized mfpSerialized;
if (fread(mfpSerialized.m_data, 1, PortabilityLayer::MacFilePropertiesSerialized::kSize, metaF) != PortabilityLayer::MacFilePropertiesSerialized::kSize)
{
fprintf(stderr, "Error reading metadata");
return -1;
}
PortabilityLayer::MacFileProperties mfp;
mfpSerialized.Deserialize(mfp);
PortabilityLayer::CFileStream cfs(inF);
PortabilityLayer::ResourceFile *resFile = PortabilityLayer::ResourceFile::Create();
resFile->Load(&cfs);
cfs.Close();
PortabilityLayer::ResourceCompiledTypeList *typeLists = nullptr;
size_t typeListCount = 0;
resFile->GetAllResourceTypeLists(typeLists, typeListCount);
std::vector<PlannedEntry> contents;
const PortabilityLayer::ResTypeID pictTypeID = PortabilityLayer::ResTypeID('PICT');
const PortabilityLayer::ResTypeID dateTypeID = PortabilityLayer::ResTypeID('Date');
const PortabilityLayer::ResTypeID sndTypeID = PortabilityLayer::ResTypeID('snd ');
for (size_t tlIndex = 0; tlIndex < typeListCount; tlIndex++)
{
const PortabilityLayer::ResourceCompiledTypeList &typeList = typeLists[tlIndex];
const PortabilityLayer::GpArcResourceTypeTag resTag = PortabilityLayer::GpArcResourceTypeTag::Encode(typeList.m_resType);
const PortabilityLayer::ResourceCompiledRef *refList = typeList.m_firstRef;
const size_t numRefs = typeList.m_numRefs;
{
char subName[256];
sprintf_s(subName, "%s", resTag.m_id);
PlannedEntry entry;
entry.m_name = subName;
entry.m_isDirectory = true;
contents.push_back(entry);
}
for (size_t rlIndex = 0; rlIndex < numRefs; rlIndex++)
{
const PortabilityLayer::ResourceCompiledRef &res = refList[rlIndex];
const void *resData = res.m_resData;
const size_t resSize = res.GetSize();
if (typeList.m_resType == pictTypeID || typeList.m_resType == dateTypeID)
{
PlannedEntry entry;
char resName[256];
sprintf_s(resName, "%s/%i.bmp", resTag.m_id, static_cast<int>(res.m_resID));
entry.m_name = resName;
if (ImportPICT(entry.m_contents, resData, resSize))
contents.push_back(entry);
}
else if (typeList.m_resType == sndTypeID)
{
PlannedEntry entry;
char resName[256];
sprintf_s(resName, "%s/%i.wav", resTag.m_id, static_cast<int>(res.m_resID));
entry.m_name = resName;
if (ImportSound(entry.m_contents, resData, resSize))
contents.push_back(entry);
}
else
{
PlannedEntry entry;
char resName[256];
sprintf_s(resName, "%s/%i.bin", resTag.m_id, static_cast<int>(res.m_resID));
entry.m_name = resName;
entry.m_contents.resize(res.GetSize());
memcpy(&entry.m_contents[0], resData, resSize);
contents.push_back(entry);
}
}
}
ExportZipFile(argv[2], contents, mfp);
resFile->Destroy();
return 0;
}