Files
EVI---AR-Demo/desktop/jni/decode.cpp

464 lines
15 KiB
C++
Executable File

#include <algorithm>
#include <utility>
#include <limits>
#ifdef DESKTOP
#include <iostream>
#endif
#include "marker.hpp"
namespace nxtar{
/******************************************************************************
* PRIVATE CONSTANTS *
******************************************************************************/
/**
* Minimal number of points in a contour.
*/
static const int MIN_POINTS = 40;
/**
* Minimal lenght of a contour to be considered as a marker candidate.
*/
static const float MIN_CONTOUR_LENGTH = 0.1;
/**
* Color for rendering the marker outlines.
*/
static const cv::Scalar COLOR = cv::Scalar(255, 255, 255);
/******************************************************************************
* PRIVATE FUNCTION PROTOTYPES *
******************************************************************************/
static float perimeter(points_vector &);
static int hammDistMarker(cv::Mat);
static cv::Mat rotate(cv::Mat);
static int decodeMarker(cv::Mat &, int &);
static void renderMarkers(markers_vector &, cv::Mat &);
static void isolateMarkers(const contours_vector &, markers_vector &);
static void findContours(cv::Mat &, contours_vector &, int);
static void warpMarker(Marker &, cv::Mat &, cv::Mat &);
/******************************************************************************
* PUBLIC API *
******************************************************************************/
void getAllMarkers(markers_vector & valid_markers, cv::Mat & img){
int rotations = 0;
cv::Mat gray, thresh, cont, mark;
contours_vector contours;
markers_vector markers;
cv::Point2f point;
#ifdef DESKTOP
std::ostringstream oss;
#endif
valid_markers.clear();
// Find all marker candidates in the input image.
// 1) First, convert the image to grayscale.
// 2) Then, binarize the grayscale image.
// 3) Finally indentify all 4 sided figures in the binarized image.
cv::cvtColor(img, gray, CV_BGR2GRAY);
cv::adaptiveThreshold(gray, thresh, 255, cv::ADAPTIVE_THRESH_MEAN_C, cv::THRESH_BINARY_INV, 7, 7);
findContours(thresh, contours, MIN_POINTS);
isolateMarkers(contours, markers);
// Remove the perspective distortion from the detected marker candidates.
// Then attempt to decode them and push the valid ones into the valid
// markers vector.
for(int i = 0; i < markers.size(); i++){
warpMarker(markers[i], gray, mark);
int code = decodeMarker(mark, rotations);
if(code != -1){
markers[i].code = code;
// If the decoder detected the marker is rotated then reorder the points
// so that the orientation calculations always use the correct top of the marker.
if(rotations > 0){
while(rotations > 0){
for(int r = 0; r < 1; r++){
point = markers[i].points.at(markers[i].points.size() - 1);
markers[i].points.pop_back();
markers[i].points.insert(markers[i].points.begin(), point);
}
rotations--;
}
}
// Rotate 180 degrees.
for(int r = 0; r < 2; r++){
point = markers[i].points.at(markers[i].points.size() - 1);
markers[i].points.pop_back();
markers[i].points.insert(markers[i].points.begin(), point);
}
valid_markers.push_back(markers[i]);
}
}
for(int i = 0; i < valid_markers.size(); i++){
#ifdef DESKTOP
// Render the detected valid markers with their codes for debbuging
// purposes.
oss << valid_markers[i].code;
cv::putText(mark, oss.str(), cv::Point(5, 250), cv::FONT_HERSHEY_PLAIN, 2, cv::Scalar::all(128), 3, 8);
oss.str("");
oss.clear();
oss << "Marker[" << i << "]";
cv::imshow(oss.str(), mark);
oss.str("");
oss.clear();
#endif
// Fix the detected corners to better approximate the markers. And
// push their codes to the output vector.
cv::cornerSubPix(gray, valid_markers[i].points, cvSize(10, 10), cvSize(-1, -1), TERM_CRITERIA);
}
// Render the detected markers on top of the input image.
cont = cv::Mat::zeros(img.size(), CV_8UC3);
renderMarkers(valid_markers, cont);
img = img + cont;
// Clear the local vectors.
markers.clear();
contours.clear();
}
void estimateMarkerPosition(markers_vector & markers, cv::Mat & camMatrix, cv::Mat & distCoeff){
cv::Mat rVec, rAux, tAux;
cv::Mat_<float> tVec, rotation(3,3);
points_vector_3D objectPoints;
// Assemble a unitary CCW oriented reference polygon.
objectPoints.push_back(cv::Point3f(-0.5f, -0.5f, 0.0f));
objectPoints.push_back(cv::Point3f(-0.5f, 0.5f, 0.0f));
objectPoints.push_back(cv::Point3f( 0.5f, 0.5f, 0.0f));
objectPoints.push_back(cv::Point3f( 0.5f, -0.5f, 0.0f));
for(size_t i = 0; i < markers.size(); i++){
// Obtain the translation and rotation vectors.
cv::solvePnP(objectPoints, markers[i].points, camMatrix, distCoeff, rAux, tAux);
// Convert the obtained vectors to float.
rAux.convertTo(rVec, CV_32F);
tAux.convertTo(tVec, CV_32F);
// Convert the rotation vector to a rotation matrix.
cv::Rodrigues(rVec, rotation);
// Make the rotation and translation relative to the "camera" and save
// the results to the output marker.
markers[i].rotation = cv::Mat(rotation.t());
markers[i].translation = cv::Mat(-tVec);
}
}
/******************************************************************************
* PRIVATE HELPER FUNCTIONS *
******************************************************************************/
/**
* Find all contours in the input image and save them to the output
* vector.
*/
void findContours(cv::Mat & img, contours_vector & v, int minP){
contours_vector c;
// A contour is discarded if it possess less than the specified
// minimum number of points.
cv::findContours(img, c, CV_RETR_LIST, CV_CHAIN_APPROX_NONE);
v.clear();
for(size_t i = 0; i < c.size(); i++){
if(c[i].size() > minP){
v.push_back(c[i]);
}
}
}
/**
* Render the input marker vector onto the output image.
*/
void renderMarkers(markers_vector & v, cv::Mat & dst){
contours_vector cv;
// Extract the points that form every marker into a contours vector.
for(size_t i = 0; i < v.size(); i++){
std::vector<cv::Point> pv;
for(size_t j = 0; j < v[i].points.size(); ++j)
pv.push_back(cv::Point2f(v[i].points[j].x, v[i].points[j].y));
cv.push_back(pv);
}
// Render.
cv::drawContours(dst, cv, -1, COLOR, 1, CV_AA);
}
/**
* Identify and return all marker candidates.
*/
void isolateMarkers(const contours_vector & vc, markers_vector & vm){
std::vector<cv::Point> appCurve;
markers_vector posMarkers;
// For every detected contour.
for(size_t i = 0; i < vc.size(); ++i){
double eps = vc[i].size() * 0.05;
// Approximate the contour with a polygon.
cv::approxPolyDP(vc[i], appCurve, eps, true);
// If the polygon is not a cuadrilateral then this is not a marker
// candidate.
if(appCurve.size() != 4 || !cv::isContourConvex(appCurve)) continue;
// Calculate the lenght of the perimeter of this candidate. If it
// is too short then discard it.
float minD = std::numeric_limits<float>::max();
for(int i = 0; i < 4; i++){
cv::Point side = appCurve[i] - appCurve[(i + 1) % 4];
float sqSideLen = side.dot(side);
minD = std::min(minD, sqSideLen);
}
if(minD < MIN_CONTOUR_LENGTH) continue;
// Save the marker and order it's points counter-clockwise.
Marker m;
for(int i = 0; i < 4; i++)
m.points.push_back(cv::Point2f(appCurve[i].x, appCurve[i].y));
cv::Point v1 = m.points[1] - m.points[0];
cv::Point v2 = m.points[2] - m.points[0];
double o = (v1.x * v2.y) - (v1.y * v2.x);
if(o < 0.0) std::swap(m.points[1], m.points[3]);
posMarkers.push_back(m);
}
// Identify contours that are to close to each other to eliminate
// possible duplicates.
std::vector<std::pair<int, int> > tooNear;
for(size_t i = 0; i < posMarkers.size(); ++i){
const Marker & m1 = posMarkers[i];
for(size_t j = i + 1; j < posMarkers.size(); j++){
const Marker & m2 = posMarkers[j];
float dSq = 0.0f;
for(int c = 0; c < 4; c++){
cv::Point v = m1.points[c] - m2.points[c];
dSq += v.dot(v);
}
dSq /= 4.0f;
if(dSq < 100) tooNear.push_back(std::pair<int, int>(i, j));
}
}
// Mark one of every pair of duplicates to be discarded.
std::vector<bool> remMask(posMarkers.size(), false);
for(size_t i = 0; i < tooNear.size(); ++i){
float p1 = perimeter(posMarkers[tooNear[i].first].points);
float p2 = perimeter(posMarkers[tooNear[i].second].points);
size_t remInd;
if(p1 > p2) remInd = tooNear[i].second;
else remInd = tooNear[i].first;
remMask[remInd] = true;
}
// Save the candidates that survided the duplicates test.
vm.clear();
for(size_t i = 0; i < posMarkers.size(); ++i){
if(!remMask[i]) vm.push_back(posMarkers[i]);
}
}
/**
* Warp a marker image to remove it's perspective distortion.
*/
void warpMarker(Marker & m, cv::Mat & in, cv::Mat & out){
cv::Mat bin;
cv::Size markerSize(350, 350);
points_vector v;
// Assemble a unitary reference polygon.
v.push_back(cv::Point2f(0,0));
v.push_back(cv::Point2f(markerSize.width-1,0));
v.push_back(cv::Point2f(markerSize.width-1,markerSize.height-1));
v.push_back(cv::Point2f(0,markerSize.height-1));
// Warp the input image's perspective to transform it into the reference
// polygon's perspective.
cv::Mat M = cv::getPerspectiveTransform(m.points, v);
cv::warpPerspective(in, bin, M, markerSize);
// Binarize the warped image into the output image.
cv::threshold(bin, out, 128, 255, cv::THRESH_BINARY | cv::THRESH_OTSU);
}
/**
* Calculate the hamming distance of a 5x5 bit matrix.
* Function by Daniel Lelis Baggio for "Mastering OpenCV with Practical Computer Vision Projects".
*/
int hammDistMarker(cv::Mat bits){
int ids[4][5] = {
{1,0,0,0,0},
{1,0,1,1,1},
{0,1,0,0,1},
{0,1,1,1,0}
};
int dist = 0;
for (int y = 0; y < 5; y++){
int minSum = 1e5;
for (int p = 0; p < 4; p++){
int sum = 0;
for (int x = 0; x < 5; x++){
sum += bits.at<uchar>(y, x) == ids[p][x] ? 0 : 1;
}
if(minSum > sum)
minSum = sum;
}
dist += minSum;
}
return dist;
}
/**
* Rotate a matrix by 90 degrees clockwise.
*/
cv::Mat rotate(cv::Mat in){
cv::Mat out;
in.copyTo(out);
for (int i = 0; i < in.rows; i++){
for (int j = 0; j < in.cols; j++){
out.at<uchar>(i, j) = in.at<uchar>(in.cols-j - 1, i);
}
}
return out;
}
/**
* Decode a marker image and return it's code. Returns -1 if the image is
* not a valid marker.
*/
int decodeMarker(cv::Mat & marker, int & rotations){
bool found = false;
int code = 0;
cv::Mat bits;
rotations = 0;
// Verify that the outer rim of marker cells are all black.
for(int y = 0; y < 7; y++){
int inc = (y == 0 || y == 6) ? 1 : 6;
for(int x = 0; x < 7; x += inc){
int cX = x * 50;
int cY = y * 50;
cv::Mat cell = marker(cv::Rect(cX, cY, 50, 50));
int nZ = cv::countNonZero(cell);
// If one of the rim cells is 50% white or more then this
// is not a valid marker.
if(nZ > (50 * 50) / 2) return -1;
}
}
// Create a 5x5 matrix to hold a simplified representation of this
// marker.
bits = cv::Mat::zeros(5, 5, CV_8UC1);
// For every cell in the marker flip it's corresponding 'bit' in the
// bit matrix if it is at least 50 % white.
for(int y = 0; y < 5; y++){
for(int x = 0; x < 5; x++){
int cX = (x + 1) * 50;
int cY = (y + 1) * 50;
cv::Mat cell = marker(cv::Rect(cX, cY, 50, 50));
int nZ = cv::countNonZero(cell);
if(nZ > (50 * 50) / 2) bits.at<uchar>(y, x) = 1;
}
}
// Calcultate the hamming distance of the bit matrix and each of it's
// 90 degree rotations to determine if this marker has a valid code.
if(hammDistMarker(bits) != 0){
for(int r = 1; r < 4; r++){
bits = rotate(bits);
rotations++;
if(hammDistMarker(bits) != 0) continue;
else{ found = true; break;}
}
}else found = true;
// If the code is valid then decode it to an int and return it.
if(found){
for(int y = 0; y < 5; y++){
code <<= 1;
if(bits.at<uchar>(y, 1))
code |= 1;
code <<= 1;
if(bits.at<uchar>(y, 3))
code |= 1;
}
return code;
}else
return -1;
}
/**
* Calculate the perimeter of a polygon defined as a vector of points.
*/
float perimeter(points_vector & p){
float per = 0.0f, dx, dy;
for(size_t i; i < p.size(); ++i){
dx = p[i].x - p[(i + 1) % p.size()].x;
dy = p[i].y - p[(i + 1) % p.size()].y;
per += sqrt((dx * dx) + (dy * dy));
}
return per;
}
}