Ported camera calibration code.
This commit is contained in:
@@ -3,8 +3,9 @@ LOCAL_PATH := $(call my-dir)
|
||||
include $(CLEAR_VARS)
|
||||
|
||||
OPENCV_CAMERA_MODULES:=off
|
||||
OPENCV_LIB_TYPE:=STATIC
|
||||
OPENCV_LIB_TYPE:=STATIC #SHARED
|
||||
include C:\Users\miguel.astor\Documents\OpenCV-2.4.8-android-sdk\sdk\native\jni\OpenCV.mk
|
||||
#include C:\NVPACK\OpenCV-2.4.5-Tegra-sdk-r2\sdk\native\jni\OpenCV-tegra3.mk
|
||||
|
||||
LOCAL_MODULE := cvproc
|
||||
LOCAL_SRC_FILES := cv_proc.cpp marker.cpp
|
||||
|
106
jni/marker.cpp
106
jni/marker.cpp
@@ -32,6 +32,11 @@ namespace nxtar{
|
||||
* PRIVATE CONSTANTS *
|
||||
******************************************************************************/
|
||||
|
||||
/**
|
||||
* Minimal number of points in a contour.
|
||||
*/
|
||||
static const int MIN_POINTS = 40;
|
||||
|
||||
/**
|
||||
* Size of a square cell in the calibration pattern.
|
||||
*/
|
||||
@@ -66,44 +71,20 @@ namespace nxtar{
|
||||
* PRIVATE FUNCTION PROTOTYPES *
|
||||
******************************************************************************/
|
||||
|
||||
/**
|
||||
* Calculates the perimeter of a points vector defining a polygon.
|
||||
*/
|
||||
float perimeter(points_vector &);
|
||||
|
||||
/**
|
||||
* Calculates the Hamming distance of a 5x5 marker.
|
||||
*/
|
||||
int hammDistMarker(cv::Mat);
|
||||
|
||||
/**
|
||||
* Rotates an OpenCV matrix in place by 90 degrees clockwise.
|
||||
*/
|
||||
cv::Mat rotate(cv::Mat);
|
||||
|
||||
/**
|
||||
* Returns the code of a 5x5 marker or -1 if the marker is not valid.
|
||||
*/
|
||||
int decodeMarker(cv::Mat &);
|
||||
|
||||
/**
|
||||
* Renders the polygon defined in the input vector on the specified image.
|
||||
*/
|
||||
void renderMarkers(markers_vector &, cv::Mat &);
|
||||
|
||||
/**
|
||||
* Identifies all possible marker candidates in a polygon vector.
|
||||
*/
|
||||
void isolateMarkers(const contours_vector &, markers_vector &);
|
||||
|
||||
/**
|
||||
* Identifies all roughly 4 side figures in the input image.
|
||||
*/
|
||||
void findContours(cv::Mat &, contours_vector &, int);
|
||||
|
||||
/**
|
||||
* Removes the prerspective distortion from a marker candidate image.
|
||||
*/
|
||||
void warpMarker(Marker &, cv::Mat &, cv::Mat &);
|
||||
|
||||
/******************************************************************************
|
||||
@@ -127,12 +108,12 @@ namespace nxtar{
|
||||
// 3) Finally indentify all 4 sided figures in the binarized image.
|
||||
cv::cvtColor(img, gray, CV_BGR2GRAY);
|
||||
cv::adaptiveThreshold(gray, thresh, 255, cv::ADAPTIVE_THRESH_MEAN_C, cv::THRESH_BINARY_INV, 7, 7);
|
||||
findContours(thresh, contours, 40);
|
||||
findContours(thresh, contours, MIN_POINTS);
|
||||
isolateMarkers(contours, markers);
|
||||
|
||||
// Remove the perspective distortion from the detected marker candidates.
|
||||
// Then attempt to decode them and push the valid ones into the valid
|
||||
// markes vector.
|
||||
// markers vector.
|
||||
for(int i = 0; i < markers.size(); i++){
|
||||
warpMarker(markers[i], gray, mark);
|
||||
|
||||
@@ -203,7 +184,7 @@ namespace nxtar{
|
||||
std::vector<points_vector_3D> object_points;
|
||||
points_vector_3D corner_points;
|
||||
|
||||
// Build the reference object points vector;
|
||||
// Build the reference object points vector.
|
||||
for(int i = 0; i < CHESSBOARD_PATTERN_SIZE.height; i++){
|
||||
for(int j = 0; j < CHESSBOARD_PATTERN_SIZE.width; j++){
|
||||
corner_points.push_back(cv::Point3f(float( j * SQUARE_SIZE ), float( i * SQUARE_SIZE ), 0));
|
||||
@@ -226,8 +207,15 @@ namespace nxtar{
|
||||
* PRIVATE HELPER FUNCTIONS *
|
||||
******************************************************************************/
|
||||
|
||||
/**
|
||||
* Find all contours in the input image and save them to the output
|
||||
* vector.
|
||||
*/
|
||||
void findContours(cv::Mat & img, contours_vector & v, int minP){
|
||||
contours_vector c;
|
||||
|
||||
// A contour is discarded if it possess less than the specified
|
||||
// minimum number of points.
|
||||
cv::findContours(img, c, CV_RETR_LIST, CV_CHAIN_APPROX_NONE);
|
||||
|
||||
v.clear();
|
||||
@@ -238,9 +226,13 @@ namespace nxtar{
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Render the input marker vector onto the output image.
|
||||
*/
|
||||
void renderMarkers(markers_vector & v, cv::Mat & dst){
|
||||
contours_vector cv;
|
||||
|
||||
// Extract the points that form every marker into a contours vector.
|
||||
for(size_t i = 0; i < v.size(); i++){
|
||||
std::vector<cv::Point> pv;
|
||||
for(size_t j = 0; j < v[i].points.size(); ++j)
|
||||
@@ -248,19 +240,30 @@ namespace nxtar{
|
||||
cv.push_back(pv);
|
||||
}
|
||||
|
||||
// Render.
|
||||
cv::drawContours(dst, cv, -1, COLOR, 1, CV_AA);
|
||||
}
|
||||
|
||||
/**
|
||||
* Identify and return all marker candidates.
|
||||
*/
|
||||
void isolateMarkers(const contours_vector & vc, markers_vector & vm){
|
||||
std::vector<cv::Point> appCurve;
|
||||
markers_vector posMarkers;
|
||||
|
||||
// For every detected contour.
|
||||
for(size_t i = 0; i < vc.size(); ++i){
|
||||
double eps = vc[i].size() * 0.05;
|
||||
|
||||
// Approximate the contour with a polygon.
|
||||
cv::approxPolyDP(vc[i], appCurve, eps, true);
|
||||
|
||||
// If the polygon is not a cuadrilateral then this is not a marker
|
||||
// candidate.
|
||||
if(appCurve.size() != 4 || !cv::isContourConvex(appCurve)) continue;
|
||||
|
||||
// Calculate the lenght of the perimeter of this candidate. If it
|
||||
// is too short then discard it.
|
||||
float minD = std::numeric_limits<float>::max();
|
||||
|
||||
for(int i = 0; i < 4; i++){
|
||||
@@ -271,6 +274,7 @@ namespace nxtar{
|
||||
|
||||
if(minD < MIN_CONTOUR_LENGTH) continue;
|
||||
|
||||
// Save the marker and order it's points counter-clockwise.
|
||||
Marker m;
|
||||
|
||||
for(int i = 0; i < 4; i++)
|
||||
@@ -285,6 +289,8 @@ namespace nxtar{
|
||||
posMarkers.push_back(m);
|
||||
}
|
||||
|
||||
// Identify contours that are to close to each other to eliminate
|
||||
// possible duplicates.
|
||||
std::vector<std::pair<int, int> > tooNear;
|
||||
for(size_t i = 0; i < posMarkers.size(); ++i){
|
||||
const Marker & m1 = posMarkers[i];
|
||||
@@ -305,8 +311,8 @@ namespace nxtar{
|
||||
}
|
||||
}
|
||||
|
||||
// Mark one of every pair of duplicates to be discarded.
|
||||
std::vector<bool> remMask(posMarkers.size(), false);
|
||||
|
||||
for(size_t i = 0; i < tooNear.size(); ++i){
|
||||
float p1 = perimeter(posMarkers[tooNear[i].first].points);
|
||||
float p2 = perimeter(posMarkers[tooNear[i].second].points);
|
||||
@@ -318,27 +324,39 @@ namespace nxtar{
|
||||
remMask[remInd] = true;
|
||||
}
|
||||
|
||||
// Save the candidates that survided the duplicates test.
|
||||
vm.clear();
|
||||
for(size_t i = 0; i < posMarkers.size(); ++i){
|
||||
if(remMask[i]) vm.push_back(posMarkers[i]);
|
||||
if(!remMask[i]) vm.push_back(posMarkers[i]);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Warp a marker image to remove it's perspective distortion.
|
||||
*/
|
||||
void warpMarker(Marker & m, cv::Mat & in, cv::Mat & out){
|
||||
cv::Mat bin;
|
||||
cv::Size markerSize(350, 350);
|
||||
points_vector v;
|
||||
|
||||
// Assemble a unitary reference polygon.
|
||||
v.push_back(cv::Point2f(0,0));
|
||||
v.push_back(cv::Point2f(markerSize.width-1,0));
|
||||
v.push_back(cv::Point2f(markerSize.width-1,markerSize.height-1));
|
||||
v.push_back(cv::Point2f(0,markerSize.height-1));
|
||||
|
||||
// Warp the input image's perspective to transform it into the reference
|
||||
// polygon's perspective.
|
||||
cv::Mat M = cv::getPerspectiveTransform(m.points, v);
|
||||
cv::warpPerspective(in, bin, M, markerSize);
|
||||
|
||||
// Binarize the warped image into the output image.
|
||||
cv::threshold(bin, out, 128, 255, cv::THRESH_BINARY | cv::THRESH_OTSU);
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculate the hamming distance of a 5x5 bit matrix.
|
||||
*/
|
||||
int hammDistMarker(cv::Mat bits){
|
||||
int ids[4][5] = {
|
||||
{1,0,0,0,0},
|
||||
@@ -369,8 +387,12 @@ namespace nxtar{
|
||||
return dist;
|
||||
}
|
||||
|
||||
/**
|
||||
* Rotate a matrix by 90 degrees clockwise.
|
||||
*/
|
||||
cv::Mat rotate(cv::Mat in){
|
||||
cv::Mat out;
|
||||
|
||||
in.copyTo(out);
|
||||
for (int i=0;i<in.rows;i++){
|
||||
for (int j=0;j<in.cols;j++){
|
||||
@@ -381,43 +403,51 @@ namespace nxtar{
|
||||
return out;
|
||||
}
|
||||
|
||||
/**
|
||||
* Decode a marker image and return it's code. Returns -1 if the image is
|
||||
* not a valid marker.
|
||||
*/
|
||||
int decodeMarker(cv::Mat & marker){
|
||||
bool found = false;
|
||||
int code = 0;
|
||||
cv::Mat bits;
|
||||
|
||||
// Verify that the outer rim of marker cells are all black.
|
||||
for(int y = 0; y < 7; y++){
|
||||
int inc = (y == 0 || y == 6) ? 1 : 6;
|
||||
|
||||
for(int x = 0; x < 7; x += inc){
|
||||
int cX = x * 50;
|
||||
int cY = y * 50;
|
||||
|
||||
cv::Mat cell = marker(cv::Rect(cX, cY, 50, 50));
|
||||
|
||||
int nZ = cv::countNonZero(cell);
|
||||
|
||||
// Not a valid marker.
|
||||
// If one of the rim cells is 50% white or more then this
|
||||
// is not a valid marker.
|
||||
if(nZ > (50 * 50) / 2) return -1;
|
||||
}
|
||||
}
|
||||
|
||||
// Create a 5x5 matrix to hold a simplified representation of this
|
||||
// marker.
|
||||
bits = cv::Mat::zeros(5, 5, CV_8UC1);
|
||||
|
||||
|
||||
// For every cell in the marker flip it's corresponding 'bit' in the
|
||||
// bit matrix if it is at least 50 % white.
|
||||
for(int y = 0; y < 5; y++){
|
||||
for(int x = 0; x < 5; x++){
|
||||
int cX = (x + 1) * 50;
|
||||
int cY = (y + 1) * 50;
|
||||
|
||||
cv::Mat cell = marker(cv::Rect(cX, cY, 50, 50));
|
||||
|
||||
int nZ = cv::countNonZero(cell);
|
||||
|
||||
if(nZ > (50 * 50) / 2) bits.at<uchar>(y, x) = 1;
|
||||
}
|
||||
}
|
||||
|
||||
// Calcultate the hamming distance of the bit matrix and each of it's
|
||||
// 90 degree rotations to determine if this marker has a valid code.
|
||||
if(hammDistMarker(bits) != 0){
|
||||
for(int r = 1; r < 4; r++){
|
||||
bits = rotate(bits);
|
||||
@@ -426,7 +456,7 @@ namespace nxtar{
|
||||
}
|
||||
}else found = true;
|
||||
|
||||
|
||||
// If the code is valid then decode it to an int and return it.
|
||||
if(found){
|
||||
for(int y = 0; y < 5; y++){
|
||||
code <<= 1;
|
||||
@@ -444,6 +474,9 @@ namespace nxtar{
|
||||
return -1;
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculate the perimeter of a polygon defined as a vector of points.
|
||||
*/
|
||||
float perimeter(points_vector & p){
|
||||
float per = 0.0f, dx, dy;
|
||||
|
||||
@@ -460,6 +493,9 @@ namespace nxtar{
|
||||
* CLASS METHODS *
|
||||
******************************************************************************/
|
||||
|
||||
/**
|
||||
* Clear the points vector associated with this marker.
|
||||
*/
|
||||
Marker::~Marker(){
|
||||
points.clear();
|
||||
}
|
||||
|
@@ -169,4 +169,10 @@ public class MainActivity extends AndroidApplication implements OSFunctionalityP
|
||||
return null;
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
public void calibrateCamera() {
|
||||
// TODO Auto-generated method stub
|
||||
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user