467 lines
14 KiB
C++
467 lines
14 KiB
C++
/*
|
|
* Copyright (C) 2014 Miguel Angel Astor Romero
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
#include <algorithm>
|
|
#include <utility>
|
|
#include <limits>
|
|
#ifdef DESKTOP
|
|
#include <iostream>
|
|
#endif
|
|
|
|
#include "marker.hpp"
|
|
|
|
namespace nxtar{
|
|
|
|
typedef std::vector<cv::Point3f> points_vector_3D;
|
|
typedef std::vector<std::vector<cv::Point> > contours_vector;
|
|
typedef std::vector<Marker> markers_vector;
|
|
|
|
/******************************************************************************
|
|
* PRIVATE CONSTANTS *
|
|
******************************************************************************/
|
|
|
|
/**
|
|
* Size of a square cell in the calibration pattern.
|
|
*/
|
|
static const float SQUARE_SIZE = 1.0f;
|
|
|
|
/**
|
|
* Minimal lenght of a contour to be considered as a marker candidate.
|
|
*/
|
|
static const float MIN_CONTOUR_LENGTH = 0.1;
|
|
|
|
/**
|
|
* Flags for the calibration pattern detecion function.
|
|
*/
|
|
static const int PATTERN_DETECTION_FLAGS = cv::CALIB_CB_ADAPTIVE_THRESH + cv::CALIB_CB_NORMALIZE_IMAGE + cv::CALIB_CB_FAST_CHECK;
|
|
|
|
/**
|
|
* Color for rendering the marker outlines.
|
|
*/
|
|
static const cv::Scalar COLOR = cv::Scalar(255, 255, 255);
|
|
|
|
/**
|
|
* Size of the chessboard pattern image (columns, rows).
|
|
*/
|
|
static const cv::Size CHESSBOARD_PATTERN_SIZE(6, 9);
|
|
|
|
/**
|
|
* Termination criteria for OpenCV's iterative algorithms.
|
|
*/
|
|
static const cv::TermCriteria TERM_CRITERIA = cv::TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 30, 0.1);
|
|
|
|
/******************************************************************************
|
|
* PRIVATE FUNCTION PROTOTYPES *
|
|
******************************************************************************/
|
|
|
|
/**
|
|
* Calculates the perimeter of a points vector defining a polygon.
|
|
*/
|
|
float perimeter(points_vector &);
|
|
|
|
/**
|
|
* Calculates the Hamming distance of a 5x5 marker.
|
|
*/
|
|
int hammDistMarker(cv::Mat);
|
|
|
|
/**
|
|
* Rotates an OpenCV matrix in place by 90 degrees clockwise.
|
|
*/
|
|
cv::Mat rotate(cv::Mat);
|
|
|
|
/**
|
|
* Returns the code of a 5x5 marker or -1 if the marker is not valid.
|
|
*/
|
|
int decodeMarker(cv::Mat &);
|
|
|
|
/**
|
|
* Renders the polygon defined in the input vector on the specified image.
|
|
*/
|
|
void renderMarkers(markers_vector &, cv::Mat &);
|
|
|
|
/**
|
|
* Identifies all possible marker candidates in a polygon vector.
|
|
*/
|
|
void isolateMarkers(const contours_vector &, markers_vector &);
|
|
|
|
/**
|
|
* Identifies all roughly 4 side figures in the input image.
|
|
*/
|
|
void findContours(cv::Mat &, contours_vector &, int);
|
|
|
|
/**
|
|
* Removes the prerspective distortion from a marker candidate image.
|
|
*/
|
|
void warpMarker(Marker &, cv::Mat &, cv::Mat &);
|
|
|
|
/******************************************************************************
|
|
* PUBLIC API *
|
|
******************************************************************************/
|
|
|
|
void getAllMarkers(std::vector<int> & codes, cv::Mat & img){
|
|
cv::Mat gray, thresh, cont, mark;
|
|
contours_vector contours;
|
|
markers_vector markers;
|
|
markers_vector valid_markers;
|
|
#ifdef DESKTOP
|
|
std::ostringstream oss;
|
|
#endif
|
|
|
|
codes.clear();
|
|
|
|
// Find all marker candidates in the input image.
|
|
// 1) First, convert the image to grayscale.
|
|
// 2) Then, binarize the grayscale image.
|
|
// 3) Finally indentify all 4 sided figures in the binarized image.
|
|
cv::cvtColor(img, gray, CV_BGR2GRAY);
|
|
cv::adaptiveThreshold(gray, thresh, 255, cv::ADAPTIVE_THRESH_MEAN_C, cv::THRESH_BINARY_INV, 7, 7);
|
|
findContours(thresh, contours, 40);
|
|
isolateMarkers(contours, markers);
|
|
|
|
// Remove the perspective distortion from the detected marker candidates.
|
|
// Then attempt to decode them and push the valid ones into the valid
|
|
// markes vector.
|
|
for(int i = 0; i < markers.size(); i++){
|
|
warpMarker(markers[i], gray, mark);
|
|
|
|
int code = decodeMarker(mark);
|
|
|
|
if(code != -1){
|
|
markers[i].code = code;
|
|
valid_markers.push_back(markers[i]);
|
|
}
|
|
}
|
|
|
|
for(int i = 0; i < valid_markers.size(); i++){
|
|
#ifdef DESKTOP
|
|
// Render the detected valid markers with their codes for debbuging
|
|
// purposes.
|
|
oss << valid_markers[i].code;
|
|
|
|
cv::putText(mark, oss.str(), cv::Point(5, 250), cv::FONT_HERSHEY_PLAIN, 2, cv::Scalar::all(128), 3, 8);
|
|
|
|
oss.str("");
|
|
oss.clear();
|
|
|
|
oss << "Marker[" << i << "]";
|
|
|
|
cv::imshow(oss.str(), mark);
|
|
|
|
oss.str("");
|
|
oss.clear();
|
|
#endif
|
|
// Fix the detected corners to better approximate the markers. And
|
|
// push their codes to the output vector.
|
|
cv::cornerSubPix(gray, valid_markers[i].points, cvSize(10, 10), cvSize(-1, -1), TERM_CRITERIA);
|
|
codes.push_back(valid_markers[i].code);
|
|
}
|
|
|
|
// Render the detected markers on top of the input image.
|
|
cont = cv::Mat::zeros(img.size(), CV_8UC3);
|
|
renderMarkers(valid_markers, cont);
|
|
img = img + cont;
|
|
|
|
// Clear the local vectors.
|
|
markers.clear();
|
|
contours.clear();
|
|
valid_markers.clear();
|
|
}
|
|
|
|
bool findCalibrationPattern(points_vector & corners, cv::Mat & img){
|
|
bool patternfound;
|
|
cv::Mat gray;
|
|
|
|
// Convert the input image to grayscale and attempt to find the
|
|
// calibration pattern.
|
|
cv::cvtColor(img, gray, CV_BGR2GRAY);
|
|
patternfound = cv::findChessboardCorners(gray, CHESSBOARD_PATTERN_SIZE, corners, PATTERN_DETECTION_FLAGS);
|
|
|
|
// If the pattern was found then fix the detected points a bit.
|
|
if(patternfound)
|
|
cv::cornerSubPix(gray, corners, cv::Size(11, 11), cv::Size(-1, -1), TERM_CRITERIA);
|
|
|
|
// Render the detected pattern.
|
|
cv::drawChessboardCorners(img, CHESSBOARD_PATTERN_SIZE, cv::Mat(corners), patternfound);
|
|
|
|
return patternfound;
|
|
}
|
|
|
|
double getCameraParameters(cv::Mat & camera_matrix, cv::Mat & dist_coeffs, std::vector<points_vector> & image_points, cv::Size image_size){
|
|
std::vector<cv::Mat> rvecs, tvecs;
|
|
std::vector<points_vector_3D> object_points;
|
|
points_vector_3D corner_points;
|
|
|
|
// Build the reference object points vector;
|
|
for(int i = 0; i < CHESSBOARD_PATTERN_SIZE.height; i++){
|
|
for(int j = 0; j < CHESSBOARD_PATTERN_SIZE.width; j++){
|
|
corner_points.push_back(cv::Point3f(float( j * SQUARE_SIZE ), float( i * SQUARE_SIZE ), 0));
|
|
}
|
|
}
|
|
object_points.push_back(corner_points);
|
|
object_points.resize(image_points.size(), object_points[0]);
|
|
|
|
// Build a camera matrix.
|
|
camera_matrix = cv::Mat::eye(3, 3, CV_64F);
|
|
|
|
// Build the distortion coefficients matrix.
|
|
dist_coeffs = cv::Mat::zeros(8, 1, CV_64F);
|
|
|
|
// Calibrate and return the reprojection error.
|
|
return cv::calibrateCamera(object_points, image_points, image_size, camera_matrix, dist_coeffs, rvecs, tvecs, 0, TERM_CRITERIA);
|
|
}
|
|
|
|
/******************************************************************************
|
|
* PRIVATE HELPER FUNCTIONS *
|
|
******************************************************************************/
|
|
|
|
void findContours(cv::Mat & img, contours_vector & v, int minP){
|
|
contours_vector c;
|
|
cv::findContours(img, c, CV_RETR_LIST, CV_CHAIN_APPROX_NONE);
|
|
|
|
v.clear();
|
|
for(size_t i = 0; i < c.size(); i++){
|
|
if(c[i].size() > minP){
|
|
v.push_back(c[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void renderMarkers(markers_vector & v, cv::Mat & dst){
|
|
contours_vector cv;
|
|
|
|
for(size_t i = 0; i < v.size(); i++){
|
|
std::vector<cv::Point> pv;
|
|
for(size_t j = 0; j < v[i].points.size(); ++j)
|
|
pv.push_back(cv::Point2f(v[i].points[j].x, v[i].points[j].y));
|
|
cv.push_back(pv);
|
|
}
|
|
|
|
cv::drawContours(dst, cv, -1, COLOR, 1, CV_AA);
|
|
}
|
|
|
|
void isolateMarkers(const contours_vector & vc, markers_vector & vm){
|
|
std::vector<cv::Point> appCurve;
|
|
markers_vector posMarkers;
|
|
|
|
for(size_t i = 0; i < vc.size(); ++i){
|
|
double eps = vc[i].size() * 0.05;
|
|
cv::approxPolyDP(vc[i], appCurve, eps, true);
|
|
|
|
if(appCurve.size() != 4 || !cv::isContourConvex(appCurve)) continue;
|
|
|
|
float minD = std::numeric_limits<float>::max();
|
|
|
|
for(int i = 0; i < 4; i++){
|
|
cv::Point side = appCurve[i] - appCurve[(i + 1) % 4];
|
|
float sqSideLen = side.dot(side);
|
|
minD = std::min(minD, sqSideLen);
|
|
}
|
|
|
|
if(minD < MIN_CONTOUR_LENGTH) continue;
|
|
|
|
Marker m;
|
|
|
|
for(int i = 0; i < 4; i++)
|
|
m.points.push_back(cv::Point2f(appCurve[i].x, appCurve[i].y));
|
|
|
|
cv::Point v1 = m.points[1] - m.points[0];
|
|
cv::Point v2 = m.points[2] - m.points[0];
|
|
|
|
double o = (v1.x * v2.y) - (v1.y * v2.x);
|
|
if(o < 0.0) std::swap(m.points[1], m.points[3]);
|
|
|
|
posMarkers.push_back(m);
|
|
}
|
|
|
|
std::vector<std::pair<int, int> > tooNear;
|
|
for(size_t i = 0; i < posMarkers.size(); ++i){
|
|
const Marker & m1 = posMarkers[i];
|
|
|
|
for(size_t j = i + 1; j < posMarkers.size(); j++){
|
|
const Marker & m2 = posMarkers[j];
|
|
|
|
float dSq = 0.0f;
|
|
|
|
for(int c = 0; c < 4; c++){
|
|
cv::Point v = m1.points[c] - m2.points[c];
|
|
dSq += v.dot(v);
|
|
}
|
|
|
|
dSq /= 4.0f;
|
|
|
|
if(dSq < 100) tooNear.push_back(std::pair<int, int>(i, j));
|
|
}
|
|
}
|
|
|
|
std::vector<bool> remMask(posMarkers.size(), false);
|
|
|
|
for(size_t i = 0; i < tooNear.size(); ++i){
|
|
float p1 = perimeter(posMarkers[tooNear[i].first].points);
|
|
float p2 = perimeter(posMarkers[tooNear[i].second].points);
|
|
|
|
size_t remInd;
|
|
if(p1 > p2) remInd = tooNear[i].second;
|
|
else remInd = tooNear[i].first;
|
|
|
|
remMask[remInd] = true;
|
|
}
|
|
|
|
vm.clear();
|
|
for(size_t i = 0; i < posMarkers.size(); ++i){
|
|
if(remMask[i]) vm.push_back(posMarkers[i]);
|
|
}
|
|
}
|
|
|
|
void warpMarker(Marker & m, cv::Mat & in, cv::Mat & out){
|
|
cv::Mat bin;
|
|
cv::Size markerSize(350, 350);
|
|
points_vector v;
|
|
v.push_back(cv::Point2f(0,0));
|
|
v.push_back(cv::Point2f(markerSize.width-1,0));
|
|
v.push_back(cv::Point2f(markerSize.width-1,markerSize.height-1));
|
|
v.push_back(cv::Point2f(0,markerSize.height-1));
|
|
|
|
cv::Mat M = cv::getPerspectiveTransform(m.points, v);
|
|
cv::warpPerspective(in, bin, M, markerSize);
|
|
|
|
cv::threshold(bin, out, 128, 255, cv::THRESH_BINARY | cv::THRESH_OTSU);
|
|
}
|
|
|
|
int hammDistMarker(cv::Mat bits){
|
|
int ids[4][5] = {
|
|
{1,0,0,0,0},
|
|
{1,0,1,1,1},
|
|
{0,1,0,0,1},
|
|
{0,1,1,1,0}
|
|
};
|
|
|
|
int dist = 0;
|
|
|
|
for (int y = 0; y < 5; y++){
|
|
int minSum = 1e5;
|
|
|
|
for (int p = 0; p < 4; p++){
|
|
int sum = 0;
|
|
|
|
for (int x = 0; x < 5; x++){
|
|
sum += bits.at<uchar>(y, x) == ids[p][x] ? 0 : 1;
|
|
}
|
|
|
|
if(minSum > sum)
|
|
minSum = sum;
|
|
}
|
|
|
|
dist += minSum;
|
|
}
|
|
|
|
return dist;
|
|
}
|
|
|
|
cv::Mat rotate(cv::Mat in){
|
|
cv::Mat out;
|
|
in.copyTo(out);
|
|
for (int i=0;i<in.rows;i++){
|
|
for (int j=0;j<in.cols;j++){
|
|
out.at<uchar>(i,j)=in.at<uchar>(in.cols-j-1,i);
|
|
}
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
int decodeMarker(cv::Mat & marker){
|
|
bool found = false;
|
|
int code = 0;
|
|
cv::Mat bits;
|
|
|
|
for(int y = 0; y < 7; y++){
|
|
int inc = (y == 0 || y == 6) ? 1 : 6;
|
|
|
|
for(int x = 0; x < 7; x += inc){
|
|
int cX = x * 50;
|
|
int cY = y * 50;
|
|
|
|
cv::Mat cell = marker(cv::Rect(cX, cY, 50, 50));
|
|
|
|
int nZ = cv::countNonZero(cell);
|
|
|
|
// Not a valid marker.
|
|
if(nZ > (50 * 50) / 2) return -1;
|
|
}
|
|
}
|
|
|
|
bits = cv::Mat::zeros(5, 5, CV_8UC1);
|
|
|
|
|
|
for(int y = 0; y < 5; y++){
|
|
for(int x = 0; x < 5; x++){
|
|
int cX = (x + 1) * 50;
|
|
int cY = (y + 1) * 50;
|
|
|
|
cv::Mat cell = marker(cv::Rect(cX, cY, 50, 50));
|
|
|
|
int nZ = cv::countNonZero(cell);
|
|
|
|
if(nZ > (50 * 50) / 2) bits.at<uchar>(y, x) = 1;
|
|
}
|
|
}
|
|
|
|
if(hammDistMarker(bits) != 0){
|
|
for(int r = 1; r < 4; r++){
|
|
bits = rotate(bits);
|
|
if(hammDistMarker(bits) != 0) continue;
|
|
else{ found = true; break;}
|
|
}
|
|
}else found = true;
|
|
|
|
|
|
if(found){
|
|
for(int y = 0; y < 5; y++){
|
|
code <<= 1;
|
|
if(bits.at<uchar>(y, 1))
|
|
code |= 1;
|
|
|
|
code <<= 1;
|
|
if(bits.at<uchar>(y, 3))
|
|
code |= 1;
|
|
}
|
|
|
|
|
|
return code;
|
|
}else
|
|
return -1;
|
|
}
|
|
|
|
float perimeter(points_vector & p){
|
|
float per = 0.0f, dx, dy;
|
|
|
|
for(size_t i; i < p.size(); ++i){
|
|
dx = p[i].x - p[(i + 1) % p.size()].x;
|
|
dy = p[i].y - p[(i + 1) % p.size()].y;
|
|
per += sqrt((dx * dx) + (dy * dy));
|
|
}
|
|
|
|
return per;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* CLASS METHODS *
|
|
******************************************************************************/
|
|
|
|
Marker::~Marker(){
|
|
points.clear();
|
|
}
|
|
}
|