Photon mapping can be executed now. Buggy as heck.

This commit is contained in:
2017-02-22 16:23:33 -04:00
parent 9bb6c0b759
commit 18dd3dc3c6
5 changed files with 132 additions and 26 deletions

View File

@@ -1,6 +1,16 @@
#include "kd_tree.hpp"
#ifndef NDEBUG
#include <iostream>
#include <fstream>
#endif
#include <queue>
#include "kd_tree.hpp"
#ifndef NDEBUG
using std::ofstream;
using std::ios;
using std::endl;
#endif
treeNode::treeNode(Photon p, superKey plane)
{
@@ -125,6 +135,7 @@ kdTree::~kdTree(){}
void kdTree::addPhoton(Photon p)
{
Photons.push_back(p);
}
@@ -259,6 +270,16 @@ bool kdTree::buildKdTree()
//printTree();
#ifndef NDEBUG
ofstream ofs("photons.txt", ios::out);
float r, g, b;
for (std::vector<Photon>::iterator it = Photons.begin(); it != Photons.end(); it++) {
rgbe2float(r, g, b, (*it).radiance);
ofs << (*it).position.x << " " << (*it).position.y << " " << (*it).position.z << " " << r << " " << g << " " << b << endl;
}
ofs.close();
#endif
return true;
}
@@ -287,7 +308,7 @@ void kdTree::printNode(treeNode* node)
{
}
std::vector<Photon> kdTree::findInRange (Vec3 min, Vec3 max)
std::vector<Photon> kdTree::findInRange (Vec3 min, Vec3 max) const
{
std::vector<Photon> photons;
@@ -296,7 +317,7 @@ std::vector<Photon> kdTree::findInRange (Vec3 min, Vec3 max)
return photons;
}
void kdTree::findInRange (Vec3 min, Vec3 max, std::vector<Photon> &photons, treeNode *node)
void kdTree::findInRange (Vec3 min, Vec3 max, std::vector<Photon> &photons, treeNode *node) const
{
if(node == NULL) return;

View File

@@ -148,7 +148,7 @@ public:
void addPhoton(Photon p);
bool buildKdTree();
void printTree();
std::vector<Photon> findInRange (Vec3 min, Vec3 max);
std::vector<Photon> findInRange (Vec3 min, Vec3 max) const;
private:
treeNode* root;
@@ -179,5 +179,5 @@ private:
void printNode(treeNode* node);
void findInRange (Vec3 min, Vec3 max, std::vector<Photon> &photons, treeNode *node);
void findInRange (Vec3 min, Vec3 max, std::vector<Photon> &photons, treeNode *node) const;
};

View File

@@ -17,6 +17,7 @@
#include "tracer.hpp"
#include "path_tracer.hpp"
#include "whitted_tracer.hpp"
#include "photon_tracer.hpp"
using namespace std;
using namespace glm;
@@ -55,6 +56,8 @@ static tracer_t g_tracer = NONE;
static unsigned int g_max_depth = 5;
static float g_gamma = 2.2f;
static float g_exposure = 0.0f;
static size_t g_photons = 15000;
static float g_p_sample_radius = 0.01f;
////////////////////////////////////////////
// Main function.
@@ -63,6 +66,7 @@ int main(int argc, char ** argv) {
Ray r;
vec2 sample;
Tracer * tracer;
PhotonTracer * p_tracer;
size_t total;
size_t current = 0;
FIBITMAP * input_bitmap;
@@ -108,8 +112,11 @@ int main(int argc, char ** argv) {
tracer = static_cast<Tracer *>(new PathTracer(g_max_depth));
} else if(g_tracer == JENSEN) {
cerr << "Photon mapping coming soon." << endl;
return EXIT_FAILURE;
cout << "Using " << ANSI_BOLD_YELLOW << "Jensen's photon mapping" << ANSI_RESET_STYLE << " with ray tracing." << endl;
p_tracer = new PhotonTracer(g_max_depth, g_p_sample_radius);
cout << "Building photon map with " << ANSI_BOLD_YELLOW << g_photons << ANSI_RESET_STYLE << " primary photons per light source." << endl;
p_tracer->build_photon_map(scn, g_photons, false);
tracer = static_cast<Tracer *>(p_tracer);
} else {
cerr << "Must specify a ray tracer with \"-t\"." << endl;
@@ -208,9 +215,9 @@ void print_usage(char ** const argv) {
cerr << "Renders the scene specified by the scene file FILE." << endl << endl;
cerr << "Mandatory options: " << endl;
cerr << " -t\tRay tracing method to use. Valid values: " << endl;
cerr << " \twhitted Classic Whitted ray tracing." << endl;
cerr << " \tmonte_carlo Monte Carlo path tracing." << endl;
cerr << " \tjensen Photon mapping. " << endl << endl;
cerr << " \t" << ANSI_BOLD_YELLOW << "whitted" << ANSI_RESET_STYLE << " Classic Whitted ray tracing." << endl;
cerr << " \t" << ANSI_BOLD_YELLOW << "monte_carlo" << ANSI_RESET_STYLE << " Monte Carlo path tracing." << endl;
cerr << " \t" << ANSI_BOLD_YELLOW << "jensen" << ANSI_RESET_STYLE << " Photon mapping. " << endl << endl;
cerr << "Extra options:" << endl;
cerr << " -o\tOutput image file name with extension." << endl;
cerr << " \tDefaults to \"output.png\"." << endl;
@@ -226,11 +233,16 @@ void print_usage(char ** const argv) {
cerr << " \tDefaults to 2.2" << endl;
cerr << " -e\tExposure scale factor (in [-8, 8])." << endl;
cerr << " \tDefaults to 0.0 (no correction)." << endl;
cerr << " -p\tNumber of primary photons per light source." << endl;
cerr << " \tDefaults to 15000." << endl;
cerr << " -h\tHemisphere radius for photon map sampling (> 0)." << endl;
cerr << " \tDefaults to 0.01f ." << endl;
}
void parse_args(int argc, char ** const argv) {
int opt;
int x_pos;
int photons;
// Check command line arguments.
if(argc == 1) {
@@ -238,7 +250,7 @@ void parse_args(int argc, char ** const argv) {
exit(EXIT_FAILURE);
}
while((opt = getopt(argc, argv, "-:t:s:w:f:o:r:g:e:")) != -1) {
while((opt = getopt(argc, argv, "-:t:s:w:f:o:r:g:e:p:h:")) != -1) {
switch (opt) {
case 1:
g_input_file = (char *)malloc((strlen(optarg) + 1) * sizeof(char));
@@ -329,6 +341,27 @@ void parse_args(int argc, char ** const argv) {
break;
case 'p':
photons = atoi(optarg);
if (photons <= 0) {
cerr << "The number of photons must be a positive integer." << endl;
print_usage(argv);
exit(EXIT_FAILURE);
}
g_photons = (size_t)photons;
break;
case 'h':
g_p_sample_radius = atof(optarg);
if (g_p_sample_radius <= 0.0f) {
cerr << "Photon map sampling radius must be greater than 0.0" << endl;
print_usage(argv);
exit(EXIT_FAILURE);
}
break;
case ':':
cerr << "Option \"-" << static_cast<char>(optopt) << "\" requires an argument." << endl;
print_usage(argv);

View File

@@ -1,24 +1,39 @@
#include <iostream>
#include <iomanip>
#include <limits>
#include <vector>
#include <glm/gtc/constants.hpp>
#include "photon_tracer.hpp"
#include "sampling.hpp"
#include "area_light.hpp"
#include "rgbe.hpp"
using std::cout;
using std::endl;
using std::setw;
using std::vector;
using std::numeric_limits;
using namespace glm;
#define ANSI_BOLD_YELLOW "\x1b[1;33m"
#define ANSI_RESET_STYLE "\x1b[m"
PhotonTracer::~PhotonTracer() { }
vec3 PhotonTracer::trace_ray(Ray & r, Scene * s, unsigned int rec_level) const {
float t, _t;
Figure * _f;
vec3 n, color, i_pos, ref, dir_diff_color, dir_spec_color;
vec3 n, color, i_pos, ref, dir_diff_color, dir_spec_color, p_contrib;
Ray mv_r, sr, rr;
bool vis, is_area_light;
float kr;
AreaLight * al;
Vec3 mn;
Vec3 mx;
vector<Photon> photons;
float red, green, blue;
t = numeric_limits<float>::max();
_f = NULL;
@@ -97,6 +112,17 @@ vec3 PhotonTracer::trace_ray(Ray & r, Scene * s, unsigned int rec_level) const {
} else if (_f->m_mat->m_rho > 0.0f && rec_level >= m_max_depth)
return vec3(0.0f);
// TODO: Change photon map search method for hemisphere search.
mn = Vec3(i_pos.x - m_h_radius, i_pos.y - m_h_radius, i_pos.z - m_h_radius);
mx = Vec3(i_pos.x + m_h_radius, i_pos.y + m_h_radius, i_pos.z + m_h_radius);
photons = m_photon_map.findInRange(mn, mx);
for (vector<Photon>::iterator it = photons.begin(); it != photons.end(); it++) {
rgbe2float(red, green, blue, (*it).radiance);
p_contrib += vec3(red, green, blue);
}
p_contrib /= pi<float>() * (m_h_radius * m_h_radius);
color += p_contrib;
} else {
// If the material has transmission enabled, calculate the Fresnel term.
kr = fresnel(r.m_direction, n, r.m_ref_index, _f->m_mat->m_ref_index);
@@ -130,17 +156,26 @@ void PhotonTracer::build_photon_map(Scene * s, const size_t n_photons_per_ligth,
vec3 l_sample, s_normal, h_sample;
float r1, r2;
Ray rr;
size_t total = 0, current = 0;
for (vector<Light *>::iterator it = s->m_lights.begin(); it != s->m_lights.end(); it++) {
total += (*it)->light_type() == Light::AREA ? 1 : 0;
}
total *= n_photons_per_ligth;
cout << "Tracing a total of " << ANSI_BOLD_YELLOW << total << ANSI_RESET_STYLE << " primary photons:" << endl;
for (vector<Light *>::iterator it = s->m_lights.begin(); it != s->m_lights.end(); it++) {
l = *it;
/* Only area lights supported right now. */
if (l->light_type() != Light::AREA)
continue;
al = static_cast<AreaLight *>(l);
#pragma omp parallel for schedule(dynamic, 1) private(l_sample, s_normal, h_sample, r1, r2, rr) shared(current)
for (size_t p = 0; p < n_photons_per_ligth; p++) {
l = *it;
/* Only area lights supported right now. */
if (l->light_type() != Light::AREA)
continue;
al = static_cast<AreaLight *>(l);
if (!specular) {
l_sample = al->sample_at_surface();
s_normal = al->normal_at_last_sample();
@@ -156,8 +191,17 @@ void PhotonTracer::build_photon_map(Scene * s, const size_t n_photons_per_ligth,
}
trace_photon(rr, s, 0, specular);
#pragma omp atomic
current++;
}
cout << "\r" << setw(3) << static_cast<size_t>((static_cast<double>(current) / static_cast<double>(total)) * 100.0) << "% done.";
}
cout << endl;
cout << "Building photon map Kd-tree." << endl;
m_photon_map.buildKdTree();
}
vec3 PhotonTracer::trace_photon(Ray &r, Scene * s, const unsigned int rec_level, const bool specular) {
@@ -199,7 +243,11 @@ vec3 PhotonTracer::trace_photon(Ray &r, Scene * s, const unsigned int rec_level,
if (is_area_light) {
p_pos = Vec3(i_pos.x, i_pos.y, i_pos.z);
photon = Photon(p_pos, _f->m_mat->m_emission.r, _f->m_mat->m_emission.g, _f->m_mat->m_emission.b);
m_photon_map.addPhoton(photon);
#pragma omp critical
{
m_photon_map.addPhoton(photon);
}
return _f->m_mat->m_emission;
@@ -312,7 +360,10 @@ vec3 PhotonTracer::trace_photon(Ray &r, Scene * s, const unsigned int rec_level,
p_pos = Vec3(i_pos.x, i_pos.y, i_pos.z);
photon = Photon(p_pos, color.r, color.g, color.b);
m_photon_map.addPhoton(photon);
#pragma omp critical
{
m_photon_map.addPhoton(photon);
}
// Return final color.
return color;

View File

@@ -7,8 +7,8 @@
class PhotonTracer: public Tracer {
public:
PhotonTracer(): Tracer() { }
PhotonTracer(unsigned int max_depth): Tracer(max_depth) { };
PhotonTracer(): Tracer(), m_h_radius(0.5f) { }
PhotonTracer(unsigned int max_depth, float _r = 0.5f): Tracer(max_depth), m_h_radius(_r) { };
virtual ~PhotonTracer();
virtual vec3 trace_ray(Ray & r, Scene * s, unsigned int rec_level) const;
@@ -16,6 +16,7 @@ public:
void build_photon_map(Scene * s, const size_t n_photons_per_ligth = 10000, const bool specular = false);
private:
float m_h_radius;
kdTree m_photon_map;
vec3 trace_photon(Ray &r, Scene * s, const unsigned int rec_level, const bool specular = false);
};