Started sketching the photon mapping.
This commit is contained in:
2
Makefile
2
Makefile
@@ -3,7 +3,7 @@ TARGET = ray
|
||||
OBJECTS = main.o sampling.o camera.o environment.o disk.o plane.o sphere.o \
|
||||
phong_brdf.o hsa_brdf.o directional_light.o point_light.o \
|
||||
spot_light.o sphere_area_light.o disk_area_light.o scene.o tracer.o \
|
||||
path_tracer.o whitted_tracer.o rgbe.o kd_tree.o
|
||||
path_tracer.o whitted_tracer.o rgbe.o kd_tree.o photon_tracer.o
|
||||
DEPENDS = $(OBJECTS:.o=.d)
|
||||
CXXFLAGS = -ansi -pedantic -Wall -DGLM_FORCE_RADIANS -fopenmp
|
||||
LDLIBS = -lfreeimage -ljson_spirit
|
||||
|
@@ -17,9 +17,7 @@ struct Vec3
|
||||
float y;
|
||||
float z;
|
||||
|
||||
Vec3() {
|
||||
x = y = z = 0.0f;
|
||||
}
|
||||
Vec3(float _x = 0.0f, float _y = 0.0f, float _z = 0.0f): x(_x), y(_y), z(_z) { }
|
||||
|
||||
inline bool equalFloat(const float x, const float y)
|
||||
{
|
||||
|
180
photon_tracer.cpp
Normal file
180
photon_tracer.cpp
Normal file
@@ -0,0 +1,180 @@
|
||||
#include <limits>
|
||||
|
||||
#include <glm/gtc/constants.hpp>
|
||||
|
||||
#include "photon_tracer.hpp"
|
||||
#include "sampling.hpp"
|
||||
#include "area_light.hpp"
|
||||
|
||||
using std::numeric_limits;
|
||||
using namespace glm;
|
||||
|
||||
PhotonTracer::~PhotonTracer() { }
|
||||
|
||||
vec3 PhotonTracer::trace_ray(Ray & r, Scene * s, unsigned int rec_level) const {
|
||||
float t, _t;
|
||||
Figure * _f;
|
||||
vec3 n, color, i_pos, ref, sample, dir_diff_color, dir_spec_color, ind_color, amb_color;
|
||||
Ray mv_r, sr, rr;
|
||||
bool vis, is_area_light = false;
|
||||
float kr, r1, r2;
|
||||
AreaLight * al;
|
||||
|
||||
t = numeric_limits<float>::max();
|
||||
_f = NULL;
|
||||
|
||||
// Find the closest intersecting surface.
|
||||
for (size_t f = 0; f < s->m_figures.size(); f++) {
|
||||
if (s->m_figures[f]->intersect(r, _t) && _t < t) {
|
||||
t = _t;
|
||||
_f = s->m_figures[f];
|
||||
}
|
||||
}
|
||||
|
||||
// If this ray intersects something:
|
||||
if (_f != NULL) {
|
||||
// Take the intersection point and the normal of the surface at that point.
|
||||
i_pos = r.m_origin + (t * r.m_direction);
|
||||
n = _f->normal_at_int(r, t);
|
||||
|
||||
is_area_light = false;
|
||||
// Check if the object is an area light;
|
||||
for (vector<Light *>::iterator it = s->m_lights.begin(); it != s->m_lights.end(); it++) {
|
||||
if ((*it)->light_type() == Light::AREA && static_cast<AreaLight *>(*it)->m_figure == _f)
|
||||
is_area_light = true;
|
||||
}
|
||||
|
||||
// If the object is an area light, return it's emission value.
|
||||
if (is_area_light) {
|
||||
return _f->m_mat->m_emission;
|
||||
|
||||
// Check if the material is not reflective/refractive.
|
||||
} else if (!_f->m_mat->m_refract) {
|
||||
// Calculate the direct lighting.
|
||||
for (size_t l = 0; l < s->m_lights.size(); l++) {
|
||||
// For every light source
|
||||
vis = true;
|
||||
|
||||
if (s->m_lights[l]->light_type() == Light::INFINITESIMAL) {
|
||||
// Cast a shadow ray to determine visibility.
|
||||
sr = Ray(s->m_lights[l]->direction(i_pos), i_pos + (n * BIAS));
|
||||
|
||||
for (size_t f = 0; f < s->m_figures.size(); f++) {
|
||||
if (s->m_figures[f]->intersect(sr, _t) && _t < s->m_lights[l]->distance(i_pos)) {
|
||||
vis = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Evaluate the shading model accounting for visibility.
|
||||
dir_diff_color += vis ? s->m_lights[l]->diffuse(n, r, i_pos, *_f->m_mat) : vec3(0.0f);
|
||||
dir_spec_color += vis ? s->m_lights[l]->specular(n, r, i_pos, *_f->m_mat) : vec3(0.0f);
|
||||
|
||||
} else if (s->m_lights[l]->light_type() == Light::AREA) {
|
||||
// Cast a shadow ray towards a sample point on the surface of the light source.
|
||||
al = static_cast<AreaLight *>(s->m_lights[l]);
|
||||
al->sample_at_surface(i_pos);
|
||||
sr = Ray(al->direction(i_pos), i_pos + (n * BIAS));
|
||||
|
||||
for (size_t f = 0; f < s->m_figures.size(); f++) {
|
||||
// Avoid self-intersection with the light source.
|
||||
if (al->m_figure != s->m_figures[f]) {
|
||||
if (s->m_figures[f]->intersect(sr, _t) && _t < al->distance(i_pos)) {
|
||||
vis = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Evaluate the shading model accounting for visibility.
|
||||
dir_diff_color += vis ? s->m_lights[l]->diffuse(n, r, i_pos, *_f->m_mat) : vec3(0.0f);
|
||||
dir_spec_color += vis ? s->m_lights[l]->specular(n, r, i_pos, *_f->m_mat) : vec3(0.0f);
|
||||
}
|
||||
}
|
||||
|
||||
// Calculate indirect lighting contribution.
|
||||
if (rec_level < m_max_depth) {
|
||||
r1 = random01();
|
||||
r2 = random01();
|
||||
sample = sample_hemisphere(r1, r2);
|
||||
rotate_sample(sample, n);
|
||||
rr = Ray(normalize(sample), i_pos + (sample * BIAS));
|
||||
ind_color += r1 * trace_ray(rr, s, rec_level + 1) / PDF;
|
||||
}
|
||||
|
||||
// Calculate environment light contribution
|
||||
vis = true;
|
||||
|
||||
r1 = random01();
|
||||
r2 = random01();
|
||||
sample = sample_hemisphere(r1, r2);
|
||||
rotate_sample(sample, n);
|
||||
rr = Ray(normalize(sample), i_pos + (sample * BIAS));
|
||||
|
||||
// Cast a shadow ray to determine visibility.
|
||||
for (size_t f = 0; f < s->m_figures.size(); f++) {
|
||||
if (s->m_figures[f]->intersect(rr, _t)) {
|
||||
vis = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
amb_color = vis ? s->m_env->get_color(rr) * max(dot(n, rr.m_direction), 0.0f) / PDF : vec3(0.0f);
|
||||
|
||||
// Add lighting.
|
||||
color += ((dir_diff_color + ind_color + amb_color) * (_f->m_mat->m_diffuse / pi<float>())) + (_f->m_mat->m_specular * dir_spec_color);
|
||||
|
||||
// Determine the specular reflection color.
|
||||
if (_f->m_mat->m_rho > 0.0f && rec_level < m_max_depth) {
|
||||
rr = Ray(normalize(reflect(r.m_direction, n)), i_pos + n * BIAS);
|
||||
color += _f->m_mat->m_rho * trace_ray(rr, s, rec_level + 1);
|
||||
} else if (_f->m_mat->m_rho > 0.0f && rec_level >= m_max_depth)
|
||||
return vec3(0.0f);
|
||||
|
||||
} else {
|
||||
// If the material has transmission enabled, calculate the Fresnel term.
|
||||
kr = fresnel(r.m_direction, n, r.m_ref_index, _f->m_mat->m_ref_index);
|
||||
|
||||
// Determine the specular reflection color.
|
||||
if (kr > 0.0f && rec_level < m_max_depth) {
|
||||
rr = Ray(normalize(reflect(r.m_direction, n)), i_pos + n * BIAS);
|
||||
color += kr * trace_ray(rr, s, rec_level + 1);
|
||||
} else if (rec_level >= m_max_depth)
|
||||
return vec3(0.0f);
|
||||
|
||||
// Determine the transmission color.
|
||||
if (_f->m_mat->m_refract && kr < 1.0f && rec_level < m_max_depth) {
|
||||
rr = Ray(normalize(refract(r.m_direction, n, r.m_ref_index / _f->m_mat->m_ref_index)), i_pos - n * BIAS, _f->m_mat->m_ref_index);
|
||||
color += (1.0f - kr) * trace_ray(rr, s, rec_level + 1);
|
||||
} else if (rec_level >= m_max_depth)
|
||||
return vec3(0.0f);
|
||||
|
||||
}
|
||||
|
||||
// Return final color.
|
||||
return _f->m_mat->m_emission + color;
|
||||
|
||||
} else
|
||||
return s->m_env->get_color(r);
|
||||
}
|
||||
|
||||
void PhotonTracer::build_photon_map(kdTree & photon_map, Scene * s, const unsigned int rec_level, const size_t n_photons_per_ligth, const bool specular) const {
|
||||
Light * l;
|
||||
Photon photon;
|
||||
|
||||
|
||||
for (vector<Light *>::iterator it = s->m_lights.begin(); it != s->m_lights.end(); it++) {
|
||||
for (size_t p = 0; p < n_photons_per_ligth; p++) {
|
||||
l = *it;
|
||||
|
||||
if (!specular) {
|
||||
// TODO: Generate photon from light source.
|
||||
} else {
|
||||
// TODO: Generate photon from light source in direction of specular reflective objects.
|
||||
}
|
||||
// TODO: Trace indirect illumination for the generated sample.
|
||||
|
||||
photon_map.addPhoton(photon);
|
||||
}
|
||||
}
|
||||
}
|
21
photon_tracer.hpp
Normal file
21
photon_tracer.hpp
Normal file
@@ -0,0 +1,21 @@
|
||||
#pragma once
|
||||
#ifndef PHOTON_TRACER_HPP
|
||||
#define PHOTON_TRACER_HPP
|
||||
|
||||
#include "tracer.hpp"
|
||||
#include "kd_tree.hpp"
|
||||
|
||||
class PhotonTracer: public Tracer {
|
||||
public:
|
||||
PhotonTracer(): Tracer() { }
|
||||
|
||||
PhotonTracer(unsigned int max_depth): Tracer(max_depth) { };
|
||||
|
||||
virtual ~PhotonTracer();
|
||||
|
||||
virtual vec3 trace_ray(Ray & r, Scene * s, unsigned int rec_level) const;
|
||||
|
||||
void build_photon_map(kdTree & photon_map, Scene * s, const unsigned int rec_level, const size_t n_photons_per_ligth = 10000, const bool specular = false) const;
|
||||
};
|
||||
|
||||
#endif
|
24
rgbe.cpp
24
rgbe.cpp
@@ -1,7 +1,29 @@
|
||||
#include <cmath>
|
||||
/* THIS CODE CARRIES NO GUARANTEE OF USABILITY OR FITNESS FOR ANY PURPOSE.
|
||||
* WHILE THE AUTHORS HAVE TRIED TO ENSURE THE PROGRAM WORKS CORRECTLY,
|
||||
* IT IS STRICTLY USE AT YOUR OWN RISK. */
|
||||
|
||||
/* This file contains code to read and write four byte rgbe file format
|
||||
developed by Greg Ward. It handles the conversions between rgbe and
|
||||
pixels consisting of floats. The data is assumed to be an array of floats.
|
||||
By default there are three floats per pixel in the order red, green, blue.
|
||||
(RGBE_DATA_??? values control this.) Only the mimimal header reading and
|
||||
writing is implemented. Each routine does error checking and will return
|
||||
a status value as defined below. This code is intended as a skeleton so
|
||||
feel free to modify it to suit your needs.
|
||||
|
||||
(Place notice here if you modified the code.)
|
||||
posted to http://www.graphics.cornell.edu/~bjw/
|
||||
written by Bruce Walter (bjw@graphics.cornell.edu) 5/26/95
|
||||
based on code written by Greg Ward
|
||||
*/
|
||||
|
||||
#include <glm/glm.hpp>
|
||||
|
||||
#include "rgbe.hpp"
|
||||
|
||||
using glm::frexp;
|
||||
using glm::ldexp;
|
||||
|
||||
/* standard conversion from float pixels to rgbe pixels */
|
||||
/* note: you can remove the "inline"s if your compiler complains about it */
|
||||
void float2rgbe(unsigned char rgbe[4], float red, float green, float blue) {
|
||||
|
Reference in New Issue
Block a user