Reflective materials have lightning now.
This commit is contained in:
4
main.cpp
4
main.cpp
@@ -264,8 +264,8 @@ static void scene_2(vector<Figure *> & vf, vector<Light *> & vl, mat4x4 & i_mode
|
||||
vf.push_back(static_cast<Figure *>(p));
|
||||
|
||||
s = new Sphere(-0.5f, -0.5f, -1.5f, 0.5f);
|
||||
s->m_mat.m_diffuse = vec3(1.0f, 1.0f, 0.0f);
|
||||
s->m_mat.m_rho = 0.9f;
|
||||
s->m_mat.m_diffuse = vec3(1.0f);
|
||||
s->m_mat.m_rho = 0.4f;
|
||||
vf.push_back(static_cast<Figure *>(s));
|
||||
|
||||
s = new Sphere(-0.5f, -0.5f, 0.6f, 0.5f);
|
||||
|
@@ -9,6 +9,8 @@ using namespace glm;
|
||||
|
||||
PathTracer::~PathTracer() { }
|
||||
|
||||
static const float PDF = (1.0f / (2.0f * pi<float>()));
|
||||
|
||||
vec3 PathTracer::trace_ray(Ray & r, vector<Figure *> & v_figures, vector<Light *> & v_lights, unsigned int rec_level) const {
|
||||
float t, _t;
|
||||
Figure * _f;
|
||||
@@ -35,7 +37,7 @@ vec3 PathTracer::trace_ray(Ray & r, vector<Figure *> & v_figures, vector<Light *
|
||||
n = _f->normal_at_int(r, t);
|
||||
|
||||
// Check if the material is not reflective/refractive.
|
||||
if( !_f->m_mat.m_refract && _f->m_mat.m_rho == 0.0f) {
|
||||
if( !_f->m_mat.m_refract) {
|
||||
// Calculate the direct lighting.
|
||||
for (size_t l = 0; l < v_lights.size(); l++) {
|
||||
// For every light source
|
||||
@@ -62,30 +64,33 @@ vec3 PathTracer::trace_ray(Ray & r, vector<Figure *> & v_figures, vector<Light *
|
||||
sample = sample_hemisphere(r1, r2);
|
||||
rotate_sample(sample, n);
|
||||
rr = Ray(normalize(sample), i_pos + (sample * BIAS));
|
||||
ind_color += r1 * trace_ray(rr, v_figures, v_lights, rec_level + 1) / (1.0f / (2.0f * pi<float>()));
|
||||
ind_color += r1 * trace_ray(rr, v_figures, v_lights, rec_level + 1) / PDF;
|
||||
}
|
||||
|
||||
color += ((dir_diff_color + ind_color) * (_f->m_mat.m_diffuse / pi<float>())) + dir_spec_color;
|
||||
|
||||
} else {
|
||||
// If the material has reflection/transmission enabled.
|
||||
// Calculate the Fresnel term if the surface is refracting.
|
||||
if (_f->m_mat.m_refract)
|
||||
kr = fresnel(r.m_direction, n, r.m_ref_index, _f->m_mat.m_ref_index);
|
||||
else
|
||||
kr = _f->m_mat.m_rho;
|
||||
// Determine the specular reflection color.
|
||||
if (_f->m_mat.m_rho > 0.0f && rec_level < MAX_RECURSION) {
|
||||
rr = Ray(normalize(reflect(r.m_direction, n)), i_pos + n * BIAS);
|
||||
color += _f->m_mat.m_rho * trace_ray(rr, v_figures, v_lights, rec_level + 1);
|
||||
} else if (_f->m_mat.m_rho > 0.0f && rec_level >= MAX_RECURSION)
|
||||
return vec3(0.0f);
|
||||
|
||||
// Determinte the specular reflection color.
|
||||
} else {
|
||||
// If the material has transmission enabled, calculate the Fresnel term.
|
||||
kr = fresnel(r.m_direction, n, r.m_ref_index, _f->m_mat.m_ref_index);
|
||||
|
||||
// Determine the specular reflection color.
|
||||
if (kr > 0.0f && rec_level < MAX_RECURSION) {
|
||||
rr = Ray(normalize(reflect(r.m_direction, n)), i_pos + n * BIAS);
|
||||
color += _f->m_mat.m_rho * kr * trace_ray(rr, v_figures, v_lights, rec_level + 1);
|
||||
color += kr * trace_ray(rr, v_figures, v_lights, rec_level + 1);
|
||||
} else if (rec_level >= MAX_RECURSION)
|
||||
return vec3(0.0f);
|
||||
|
||||
// Determine the transmission color.
|
||||
if (_f->m_mat.m_refract && kr < 1.0f && rec_level < MAX_RECURSION) {
|
||||
rr = Ray(normalize(refract(r.m_direction, n, r.m_ref_index / _f->m_mat.m_ref_index)), i_pos - n * BIAS, _f->m_mat.m_ref_index);
|
||||
color += (1.0f - _f->m_mat.m_rho) * (1.0f - kr) * trace_ray(rr, v_figures, v_lights, rec_level + 1);
|
||||
color += (1.0f - kr) * trace_ray(rr, v_figures, v_lights, rec_level + 1);
|
||||
} else if (rec_level >= MAX_RECURSION)
|
||||
return vec3(0.0f);
|
||||
|
||||
|
Reference in New Issue
Block a user