Added camera abstraction.

This commit is contained in:
Miguel Angel Astor Romero
2017-01-12 17:23:11 -04:00
parent 991d339b65
commit 724a98f8a0
12 changed files with 215 additions and 93 deletions

View File

@@ -1,6 +1,6 @@
CXX = g++ CXX = g++
TARGET = ray TARGET = ray
OBJECTS = main.o disk.o plane.o sphere.o directional_light.o phong_brdf.o point_light.o spot_light.o tracer.o path_tracer.o whitted_tracer.o OBJECTS = main.o sampling.o camera.o disk.o plane.o sphere.o directional_light.o phong_brdf.o point_light.o spot_light.o tracer.o path_tracer.o whitted_tracer.o
DEPENDS = $(OBJECTS:.o=.d) DEPENDS = $(OBJECTS:.o=.d)
CXXFLAGS = -ansi -pedantic -Wall -DGLM_FORCE_RADIANS -fopenmp CXXFLAGS = -ansi -pedantic -Wall -DGLM_FORCE_RADIANS -fopenmp
LDLIBS = -lfreeimage LDLIBS = -lfreeimage

64
camera.cpp Normal file
View File

@@ -0,0 +1,64 @@
#include <glm/gtx/rotate_vector.hpp>
#include "camera.hpp"
#include "sampling.hpp"
using glm::vec4;
using glm::rotate;
using glm::radians;
using glm::cross;
void Camera::reset() {
m_inv_view_matrix = inverse(lookAt(m_eye, m_look, m_up));
}
void Camera::translate(vec3 t) {
mat4 t_matrix = glm::translate(mat4(1.0f), t);
vec4 new_eye = t_matrix * vec4(m_eye, 1.0f);
vec4 new_look = t_matrix * vec4(m_look, 1.0f);
m_eye = vec3(new_eye.x, new_eye.y, new_eye.z);
m_look = vec3(new_look.x, new_look.y, new_look.z);
reset();
}
void Camera::pitch(float angle) {
vec3 view_dir = normalize(m_look - m_eye);
vec3 left = cross(view_dir, m_up);
view_dir = rotate(view_dir, radians(angle), left);
m_up = normalize(rotate(m_up, radians(angle), left));
m_look = m_eye + view_dir;
reset();
}
void Camera::yaw(float angle) {
vec3 view_dir = rotate(normalize(m_look - m_eye), radians(angle), m_up);
m_look = m_eye + view_dir;
reset();
}
void Camera::roll(float angle) {
m_up = normalize(rotate(m_up, radians(angle), normalize(m_look - m_eye)));
reset();
}
void Camera::view_to_world(Ray & r) const {
vec4 dir = m_inv_view_matrix * vec4(r.m_direction, 0.0f);
vec4 orig = m_inv_view_matrix * vec4(r.m_origin, 1.0f);
r.m_direction = vec3(dir.x, dir.y, dir.z);
r.m_origin = vec3(orig.x, orig.y, orig.z);
}
vec2 Camera::sample_pixel(int i, int j) const {
float pxNDC;
float pyNDC;
float pxS;
float pyS;
pyNDC = (static_cast<float>(i) + random01()) / m_h;
pyS = (1.0f - (2.0f * pyNDC)) * glm::tan(radians(m_fov / 2.0f));
pxNDC = (static_cast<float>(j) + random01()) / m_w;
pxS = (2.0f * pxNDC) - 1.0f;
pxS *= m_a_ratio * glm::tan(radians(m_fov / 2.0f));
return vec2(pxS, pyS);
}

51
camera.hpp Normal file
View File

@@ -0,0 +1,51 @@
#pragma once
#ifndef CAMERA_HPP
#define CAMERA_HPP
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include "ray.hpp"
using glm::mat4;
using glm::vec2;
using glm::vec3;
using glm::normalize;
using glm::lookAt;
using glm::inverse;
class Camera {
public:
int m_h;
int m_w;
float m_fov;
float m_a_ratio;
vec3 m_eye;
vec3 m_look;
vec3 m_up;
Camera(int h = 480, int w = 640, float fov = 90.0f, vec3 _e = vec3(0.0f), vec3 _l = vec3(0.0f, 0.0f, -1.0f), vec3 _u = vec3(0.0f, 1.0f, 0.0f)):
m_h(h),
m_w(w),
m_fov(fov),
m_eye(_e),
m_look(_l),
m_up(normalize(_u))
{
m_a_ratio = static_cast<float>(w) / static_cast<float>(h);
m_inv_view_matrix = inverse(lookAt(_e, _l, _u));
}
void reset();
void translate(vec3 t);
void pitch(float angle);
void yaw(float angle);
void roll(float angle);
vec2 sample_pixel(int i, int j) const;
void view_to_world(Ray & r) const;
private:
mat4 m_inv_view_matrix;
};
#endif

View File

@@ -11,6 +11,7 @@
#include <glm/gtc/matrix_transform.hpp> #include <glm/gtc/matrix_transform.hpp>
#include <FreeImage.h> #include <FreeImage.h>
#include "camera.hpp"
#include "ray.hpp" #include "ray.hpp"
#include "figure.hpp" #include "figure.hpp"
#include "sphere.hpp" #include "sphere.hpp"
@@ -32,10 +33,10 @@ using namespace glm;
//////////////////////////////////////////// ////////////////////////////////////////////
// Function prototypes. // Function prototypes.
//////////////////////////////////////////// ////////////////////////////////////////////
static void scene_1(vector<Figure *> & vf, vector<Light *> & vl, mat4x4 & i_model_view); static void scene_1(vector<Figure *> & vf, vector<Light *> & vl, Camera * c);
static void scene_2(vector<Figure *> & vf, vector<Light *> & vl, mat4x4 & i_model_view); static void scene_2(vector<Figure *> & vf, vector<Light *> & vl, Camera * c);
static void scene_3(vector<Figure *> & vf, vector<Light *> & vl, mat4x4 & i_model_view); static void scene_3(vector<Figure *> & vf, vector<Light *> & vl, Camera * c);
static void scene_4(vector<Figure *> & vf, vector<Light *> & vl, mat4x4 & i_model_view); static void scene_4(vector<Figure *> & vf, vector<Light *> & vl, Camera * c);
static void print_usage(char ** const argv); static void print_usage(char ** const argv);
static void parse_args(int argc, char ** const argv); static void parse_args(int argc, char ** const argv);
@@ -70,30 +71,31 @@ int main(int argc, char ** argv) {
Tracer * tracer; Tracer * tracer;
size_t total; size_t total;
size_t current = 0; size_t current = 0;
mat4x4 i_model_view;
vec4 dir, orig;
FIBITMAP * output_bitmap; FIBITMAP * output_bitmap;
FREE_IMAGE_FORMAT fif; FREE_IMAGE_FORMAT fif;
BYTE * bits; BYTE * bits;
int bpp; int bpp;
Camera * cam;
parse_args(argc, argv); parse_args(argc, argv);
// Initialize everything. // Initialize everything.
FreeImage_Initialise(); FreeImage_Initialise();
cam = new Camera(g_h, g_w, g_fov);
image = new vec3*[g_h]; image = new vec3*[g_h];
for (int i = 0; i < g_h; i++) { for (int i = 0; i < g_h; i++) {
image[i] = new vec3[g_w]; image[i] = new vec3[g_w];
} }
scene_2(figures, lights, i_model_view); scene_2(figures, lights, cam);
// Create the tracer object. // Create the tracer object.
if (g_tracer == WHITTED) if (g_tracer == WHITTED)
tracer = static_cast<Tracer *>(new WhittedTracer(g_h, g_w, g_fov, g_max_depth)); tracer = static_cast<Tracer *>(new WhittedTracer(g_max_depth));
else if(g_tracer == MONTE_CARLO) else if(g_tracer == MONTE_CARLO)
tracer = static_cast<Tracer *>(new PathTracer(g_h, g_w, g_fov, g_max_depth)); tracer = static_cast<Tracer *>(new PathTracer(g_max_depth));
else if(g_tracer == JENSEN) { else if(g_tracer == JENSEN) {
cerr << "Photon mapping coming soon." << endl; cerr << "Photon mapping coming soon." << endl;
return EXIT_FAILURE; return EXIT_FAILURE;
@@ -105,14 +107,13 @@ int main(int argc, char ** argv) {
// Generate the image. // Generate the image.
total = g_h * g_w * g_samples; total = g_h * g_w * g_samples;
#pragma omp parallel for schedule(dynamic, 1) private(r, sample, dir, orig) shared(current) #pragma omp parallel for schedule(dynamic, 1) private(r, sample) shared(current)
for (int i = 0; i < g_h; i++) { for (int i = 0; i < g_h; i++) {
for (int j = 0; j < g_w; j++) { for (int j = 0; j < g_w; j++) {
for (int k = 0; k < g_samples; k++) { for (int k = 0; k < g_samples; k++) {
sample = tracer->sample_pixel(i, j); sample = cam->sample_pixel(i, j);
dir = i_model_view * normalize(vec4(sample, -0.5f, 1.0f) - vec4(0.0f, 0.0f, 0.0f, 1.0f)); r = Ray(normalize(vec3(sample, -0.5f) - vec3(0.0f)), vec3(0.0f));
orig = i_model_view * vec4(0.0f, 0.0f, 0.0f, 1.0f); cam->view_to_world(r);
r = Ray(dir.x, dir.y, dir.z, orig.x, orig.y, orig.z);
image[i][j] += tracer->trace_ray(r, figures, lights, 0); image[i][j] += tracer->trace_ray(r, figures, lights, 0);
#pragma omp atomic #pragma omp atomic
current++; current++;
@@ -146,6 +147,7 @@ int main(int argc, char ** argv) {
if (g_out_file_name != NULL) if (g_out_file_name != NULL)
free(g_out_file_name); free(g_out_file_name);
delete cam;
delete tracer; delete tracer;
for (size_t i = 0; i < figures.size(); i++) { for (size_t i = 0; i < figures.size(); i++) {
@@ -292,7 +294,7 @@ void parse_args(int argc, char ** const argv) {
g_input_file = argv[optind]; g_input_file = argv[optind];
} }
void scene_1(vector<Figure *> & vf, vector<Light *> & vl, mat4x4 & i_model_view) { void scene_1(vector<Figure *> & vf, vector<Light *> & vl, Camera * c) {
Sphere * s; Sphere * s;
Plane * p; Plane * p;
Disk * d; Disk * d;
@@ -367,7 +369,7 @@ void scene_1(vector<Figure *> & vf, vector<Light *> & vl, mat4x4 & i_model_view)
vl.push_back(static_cast<Light *>(l)); vl.push_back(static_cast<Light *>(l));
} }
void scene_2(vector<Figure *> & vf, vector<Light *> & vl, mat4x4 & i_model_view) { void scene_2(vector<Figure *> & vf, vector<Light *> & vl, Camera * c) {
Sphere * s; Sphere * s;
Plane * p; Plane * p;
Disk * d; Disk * d;
@@ -435,14 +437,19 @@ void scene_2(vector<Figure *> & vf, vector<Light *> & vl, mat4x4 & i_model_view)
vl.push_back(static_cast<Light *>(l)); vl.push_back(static_cast<Light *>(l));
} }
void scene_3(vector<Figure *> & vf, vector<Light *> & vl, mat4x4 & i_model_view) { void scene_3(vector<Figure *> & vf, vector<Light *> & vl, Camera * c) {
Sphere * s; Sphere * s;
Plane * p; Plane * p;
DirectionalLight * l; DirectionalLight * l;
vec3 eye = vec3(0.0f, 1.5f, 0.0f); vec3 eye = vec3(0.0f, 1.5f, 0.0f);
vec3 center = vec3(0.0f, 0.0f, -2.0f); vec3 center = vec3(0.0f, 0.0f, -2.0f);
vec3 left = vec3(-1.0f, 0.0f, 0.0f); vec3 left = vec3(-1.0f, 0.0f, 0.0f);
vec3 up = cross(center - eye, left);
c->m_eye = eye;
c->m_look = center;
c->m_up = cross(normalize(center - eye), left);
c->translate(vec3(1.0f, 0.0f, 0.0f));
c->roll(15.0f);
s = new Sphere(0.0f, -0.15f, -2.0f, 1.0f); s = new Sphere(0.0f, -0.15f, -2.0f, 1.0f);
s->m_mat->m_diffuse = vec3(1.0f, 0.5f, 0.0f); s->m_mat->m_diffuse = vec3(1.0f, 0.5f, 0.0f);
@@ -498,11 +505,9 @@ void scene_3(vector<Figure *> & vf, vector<Light *> & vl, mat4x4 & i_model_view)
l->m_position = normalize(vec3(1.0f, 0.0f, 1.0f)); l->m_position = normalize(vec3(1.0f, 0.0f, 1.0f));
l->m_diffuse = vec3(0.5f); l->m_diffuse = vec3(0.5f);
vl.push_back(static_cast<Light *>(l)); vl.push_back(static_cast<Light *>(l));
i_model_view = inverse(lookAt(eye, center, up));
} }
void scene_4(vector<Figure *> & vf, vector<Light *> & vl, mat4x4 & i_model_view) { void scene_4(vector<Figure *> & vf, vector<Light *> & vl, Camera * c) {
Sphere * s; Sphere * s;
Plane * p; Plane * p;

Binary file not shown.

Before

Width:  |  Height:  |  Size: 545 KiB

After

Width:  |  Height:  |  Size: 546 KiB

View File

@@ -3,14 +3,13 @@
#include <glm/gtc/constants.hpp> #include <glm/gtc/constants.hpp>
#include "path_tracer.hpp" #include "path_tracer.hpp"
#include "sampling.hpp"
using std::numeric_limits; using std::numeric_limits;
using namespace glm; using namespace glm;
PathTracer::~PathTracer() { } PathTracer::~PathTracer() { }
static const float PDF = (1.0f / (2.0f * pi<float>()));
vec3 PathTracer::trace_ray(Ray & r, vector<Figure *> & v_figures, vector<Light *> & v_lights, unsigned int rec_level) const { vec3 PathTracer::trace_ray(Ray & r, vector<Figure *> & v_figures, vector<Light *> & v_lights, unsigned int rec_level) const {
float t, _t; float t, _t;
Figure * _f; Figure * _f;
@@ -121,5 +120,5 @@ vec3 PathTracer::trace_ray(Ray & r, vector<Figure *> & v_figures, vector<Light *
return clamp(color, 0.0f, 1.0f); return clamp(color, 0.0f, 1.0f);
} else } else
return /*vec3(0.0f)*/ BCKG_COLOR; return BCKG_COLOR;
} }

View File

@@ -8,7 +8,7 @@ class PathTracer: public Tracer {
public: public:
PathTracer(): Tracer() { } PathTracer(): Tracer() { }
PathTracer(int h, int w, float fov, unsigned int max_depth): Tracer(h, w, fov, max_depth) { }; PathTracer(unsigned int max_depth): Tracer(max_depth) { };
virtual ~PathTracer(); virtual ~PathTracer();

45
sampling.cpp Normal file
View File

@@ -0,0 +1,45 @@
#include <cstdlib>
#include <glm/glm.hpp>
#include <glm/gtc/constants.hpp>
#include "sampling.hpp"
using glm::mat3;
using glm::abs;
using glm::normalize;
using glm::cross;
using glm::pi;
const float PDF = (1.0f / (2.0f * pi<float>()));
float random01() {
return static_cast<float>(rand()) / static_cast<float>(RAND_MAX);
}
/* Sampling functions pretty much taken from scratchapixel.com */
void create_coords_system(const vec3 &n, vec3 &nt, vec3 &nb) {
if (abs(n.x) > abs(n.y))
nt = normalize(vec3(n.z, 0.0f, -n.x));
else
nt = normalize(vec3(0.0f, -n.z, n.y));
nb = normalize(cross(n, nt));
}
vec3 sample_hemisphere(const float r1, float r2) {
float sin_t = glm::sqrt(1.0f - (r1 * r1));
float phi = 2 * pi<float>() * r2;
float x = sin_t * glm::cos(phi);
float z = sin_t * glm::sin(phi);
return vec3(x, r1, z);
}
void rotate_sample(vec3 & sample, vec3 & n) {
vec3 nt, nb;
mat3 rot_m;
create_coords_system(n, nt, nb);
sample = vec3(sample.x * nb.x + sample.y * n.x + sample.z * nt.x,
sample.x * nb.y + sample.y * n.y + sample.z * nt.y,
sample.x * nb.z + sample.y * n.z + sample.z * nt.z);
}

16
sampling.hpp Normal file
View File

@@ -0,0 +1,16 @@
#pragma once
#ifndef SAMPLING_HPP
#define SAMPLING_HPP
#include <glm/vec3.hpp>
using glm::vec3;
extern const float PDF;
extern float random01();
extern void create_coords_system(const vec3 &n, vec3 &nt, vec3 &nb);
extern vec3 sample_hemisphere(const float r1, float r2);
extern void rotate_sample(vec3 & sample, vec3 & n);
#endif

View File

@@ -1,23 +1,17 @@
#include <cstdlib>
#include <glm/gtc/constants.hpp>
#include "tracer.hpp" #include "tracer.hpp"
using namespace glm; using glm::dot;
using glm::normalize;
using glm::refract;
const float BIAS = 0.000001f; const float BIAS = 0.000001f;
const vec3 BCKG_COLOR = vec3(1.0f); const vec3 BCKG_COLOR = vec3(1.0f);
float Tracer::random01() const {
return static_cast<float>(rand()) / static_cast<float>(RAND_MAX);
}
float Tracer::fresnel(const vec3 & i, const vec3 & n, const float ir1, const float ir2) const { float Tracer::fresnel(const vec3 & i, const vec3 & n, const float ir1, const float ir2) const {
float cos_t1 = dot(i, n); float cos_t1 = dot(i, n);
float cos_t2 = dot(normalize(refract(i, n, ir1 / ir2)), n); float cos_t2 = dot(normalize(refract(i, n, ir1 / ir2)), n);
float sin_t2 = (ir1 / ir2) * sqrt(1.0f - (cos_t2 * cos_t2)); float sin_t2 = (ir1 / ir2) * glm::sqrt(1.0f - (cos_t2 * cos_t2));
if (sin_t2 >= 1.0f) if (sin_t2 >= 1.0f)
return 1.0f; return 1.0f;
@@ -27,44 +21,3 @@ float Tracer::fresnel(const vec3 & i, const vec3 & n, const float ir1, const flo
return ((fr_par * fr_par) + (fr_per * fr_per)) / 2.0f; return ((fr_par * fr_par) + (fr_per * fr_per)) / 2.0f;
} }
vec2 Tracer::sample_pixel(int i, int j) const {
float pxNDC;
float pyNDC;
float pxS;
float pyS;
pyNDC = (static_cast<float>(i) + random01()) / m_h;
pyS = (1.0f - (2.0f * pyNDC)) * tan(radians(m_fov / 2));
pxNDC = (static_cast<float>(j) + random01()) / m_w;
pxS = (2.0f * pxNDC) - 1.0f;
pxS *= m_a_ratio * tan(radians(m_fov / 2));
return vec2(pxS, pyS);
}
/* Helper functions pretty much taken from scratchapixel.com */
void Tracer::create_coords_system(const vec3 &n, vec3 &nt, vec3 &nb) const {
if (abs(n.x) > abs(n.y))
nt = normalize(vec3(n.z, 0.0f, -n.x));
else
nt = normalize(vec3(0.0f, -n.z, n.y));
nb = normalize(cross(n, nt));
}
vec3 Tracer::sample_hemisphere(const float r1, const float r2) const {
float sin_t = sqrt(1.0f - (r1 * r1));
float phi = 2 * pi<float>() * r2;
float x = sin_t * cos(phi);
float z = sin_t * sin(phi);
return vec3(x, r1, z);
}
void Tracer::rotate_sample(vec3 & sample, const vec3 & n) const {
vec3 nt, nb;
mat3 rot_m;
create_coords_system(n, nt, nb);
sample = vec3(sample.x * nb.x + sample.y * n.x + sample.z * nt.x,
sample.x * nb.y + sample.y * n.y + sample.z * nt.y,
sample.x * nb.z + sample.y * n.z + sample.z * nt.z);
}

View File

@@ -20,29 +20,18 @@ extern const vec3 BCKG_COLOR;
class Tracer { class Tracer {
public: public:
int m_h;
int m_w;
float m_fov;
float m_a_ratio;
unsigned int m_max_depth; unsigned int m_max_depth;
Tracer(): m_h(480), m_w(640), m_fov(90.0f), m_a_ratio(640.0f / 480.0f), m_max_depth(5) { } Tracer(): m_max_depth(5) { }
Tracer(int h, int w, float fov, unsigned int max_depth): m_h(h), m_w(w), m_fov(fov), m_max_depth(max_depth) { Tracer(unsigned int max_depth): m_max_depth(max_depth) { }
m_a_ratio = static_cast<float>(w) / static_cast<float>(h);
};
virtual ~Tracer() { } virtual ~Tracer() { }
vec2 sample_pixel(int i, int j) const;
virtual vec3 trace_ray(Ray & r, vector<Figure *> & v_figures, vector<Light *> & v_lights, unsigned int rec_level) const = 0; virtual vec3 trace_ray(Ray & r, vector<Figure *> & v_figures, vector<Light *> & v_lights, unsigned int rec_level) const = 0;
protected: protected:
float random01() const;
float fresnel(const vec3 & i, const vec3 & n, const float ir1, const float ir2) const; float fresnel(const vec3 & i, const vec3 & n, const float ir1, const float ir2) const;
void create_coords_system(const vec3 &n, vec3 &nt, vec3 &nb) const;
vec3 sample_hemisphere(const float r1, const float r2) const;
void rotate_sample(vec3 & sample, const vec3 & n) const;
}; };
#endif #endif

View File

@@ -8,7 +8,7 @@ class WhittedTracer: public Tracer {
public: public:
WhittedTracer(): Tracer() { } WhittedTracer(): Tracer() { }
WhittedTracer(int h, int w, float fov, unsigned int max_depth): Tracer(h, w, fov, max_depth) { }; WhittedTracer(unsigned int max_depth): Tracer(max_depth) { };
virtual ~WhittedTracer(); virtual ~WhittedTracer();