From c6060521d4dab0534be78850460425e8a6d7cabd Mon Sep 17 00:00:00 2001 From: Miguel Angel Date: Wed, 22 Feb 2017 21:14:08 -0400 Subject: [PATCH] More photons. Still buggy as hell. --- kd_tree.cpp | 4 +- kd_tree.hpp | 16 ++-- photon_tracer.cpp | 233 ++++++++++++++++----------------------------- photon_tracer.hpp | 2 +- whitted_tracer.cpp | 2 +- 5 files changed, 96 insertions(+), 161 deletions(-) diff --git a/kd_tree.cpp b/kd_tree.cpp index 48cada0..affad6a 100644 --- a/kd_tree.cpp +++ b/kd_tree.cpp @@ -140,7 +140,7 @@ void kdTree::addPhoton(Photon p) } -void kdTree::createNodeKdTree(treeNode** node, std::vector originalData , int* xyz, int* yzx, int* zxy, superKey key, int begin, int end, int* xyz_2, int* yzx_2, int* zxy_2) +void kdTree::createNodeKdTree(treeNode** node, std::vector & originalData , int* xyz, int* yzx, int* zxy, superKey key, int begin, int end, int* xyz_2, int* yzx_2, int* zxy_2) { if(end - begin < 2) { @@ -196,7 +196,7 @@ void kdTree::createNodeKdTree(treeNode** node, std::vector originalData createNodeKdTree((*node)->getRightChild(), originalData, xyz_2, yzx_2, zxy_2, key, mid + 1, end, xyz, yzx, zxy); } -void kdTree::reorderArrays(std::vector originalData, int* A1, int* A2, int begin, int mid, int end, int orderIndex, superKey key, int* B1, int* B2) +void kdTree::reorderArrays(std::vector & originalData, int* A1, int* A2, int begin, int mid, int end, int orderIndex, superKey key, int* B1, int* B2) { int lowerindex1 = begin, higherindex1 = mid + 1, lowerindex2 = begin, higherindex2 = mid + 1; diff --git a/kd_tree.hpp b/kd_tree.hpp index d06bcae..3465cd7 100644 --- a/kd_tree.hpp +++ b/kd_tree.hpp @@ -43,14 +43,14 @@ struct Vec3 struct Photon { Vec3 position; + Vec3 direction; + float ref_index; unsigned char radiance[4]; - char phi, theta; - short unused_flag; // for 20 bytes struct. - Photon(Vec3 _p = Vec3(), float red = 0.0f, float green = 0.0f, float blue = 0.0f, char _phi = 0.0f, char _theta = 0.0f): + Photon(Vec3 _p = Vec3(), Vec3 _d = Vec3(), float red = 0.0f, float green = 0.0f, float blue = 0.0f, float _r = 1.0f): position(_p), - phi(_phi), - theta(_theta) + direction(_d), + ref_index(_r) { float2rgbe(radiance, red, green, blue); } @@ -159,7 +159,7 @@ private: std::vector Photons; void createNodeKdTree(treeNode** node, - std::vector originalData , + std::vector & originalData , int* xyz, int* yzx, int* zxy, @@ -170,7 +170,7 @@ private: int* yzx_2, int* zxy_2); - void reorderArrays(std::vector originalData, + void reorderArrays(std::vector & originalData, int* A1, int* A2, int begin, @@ -183,5 +183,5 @@ private: void printNode(treeNode* node); - void findInRange (Vec3 min, Vec3 max, std::vector &photons, treeNode *node) const; + void findInRange (Vec3 min, Vec3 max, std::vector & photons, treeNode *node) const; }; diff --git a/photon_tracer.cpp b/photon_tracer.cpp index 2b63bf1..98f3b55 100644 --- a/photon_tracer.cpp +++ b/photon_tracer.cpp @@ -22,17 +22,14 @@ using namespace glm; PhotonTracer::~PhotonTracer() { } vec3 PhotonTracer::trace_ray(Ray & r, Scene * s, unsigned int rec_level) const { - float t, _t; + float t, _t, radius, red, green, blue, kr; Figure * _f; vec3 n, color, i_pos, ref, dir_diff_color, dir_spec_color, p_contrib; Ray mv_r, sr, rr; bool vis, is_area_light; - float kr; AreaLight * al; - Vec3 mn; - Vec3 mx; + Vec3 mn, mx; vector photons; - float red, green, blue; t = numeric_limits::max(); _f = NULL; @@ -101,8 +98,27 @@ vec3 PhotonTracer::trace_ray(Ray & r, Scene * s, unsigned int rec_level) const { dir_diff_color += vis ? s->m_lights[l]->diffuse(n, r, i_pos, *_f->m_mat) : vec3(0.0f); dir_spec_color += vis ? s->m_lights[l]->specular(n, r, i_pos, *_f->m_mat) : vec3(0.0f); } + + // TODO: Change photon map search method for hemisphere search. + radius = m_h_radius; + mn = Vec3(i_pos.x - radius, i_pos.y - radius, i_pos.z - radius); + mx = Vec3(i_pos.x + radius, i_pos.y + radius, i_pos.z + radius); + + while((photons = m_photon_map.findInRange(mn, mx)).size() == 0 && radius < 5.0) { + radius *= 2; + mn = Vec3(i_pos.x - radius, i_pos.y - radius, i_pos.z - radius); + mx = Vec3(i_pos.x + radius, i_pos.y + radius, i_pos.z + radius); + } + + if (photons.size() > 0) { + for (vector::iterator it = photons.begin(); it != photons.end(); it++) { + (*it).getColor(red, green, blue); + p_contrib += vec3(red, green, blue); + } + p_contrib /= pi() * (radius * radius) * photons.size(); + } - color += (dir_diff_color * (_f->m_mat->m_diffuse / pi())) + (_f->m_mat->m_specular * dir_spec_color); + color += ((dir_diff_color + p_contrib) * (_f->m_mat->m_diffuse / pi())) + (_f->m_mat->m_specular * dir_spec_color); // Determine the specular reflection color. if (_f->m_mat->m_rho > 0.0f && rec_level < m_max_depth) { @@ -111,17 +127,6 @@ vec3 PhotonTracer::trace_ray(Ray & r, Scene * s, unsigned int rec_level) const { } else if (_f->m_mat->m_rho > 0.0f && rec_level >= m_max_depth) return vec3(0.0f); - // TODO: Change photon map search method for hemisphere search. - mn = Vec3(i_pos.x - m_h_radius, i_pos.y - m_h_radius, i_pos.z - m_h_radius); - mx = Vec3(i_pos.x + m_h_radius, i_pos.y + m_h_radius, i_pos.z + m_h_radius); - photons = m_photon_map.findInRange(mn, mx); - for (vector::iterator it = photons.begin(); it != photons.end(); it++) { - (*it).getColor(red, green, blue); - p_contrib += vec3(red, green, blue); - } - p_contrib /= pi() * (m_h_radius * m_h_radius); - color += p_contrib; - } else { // If the material has transmission enabled, calculate the Fresnel term. kr = fresnel(r.m_direction, n, r.m_ref_index, _f->m_mat->m_ref_index); @@ -153,8 +158,9 @@ void PhotonTracer::build_photon_map(Scene * s, const size_t n_photons_per_ligth, Light * l; AreaLight * al; vec3 l_sample, s_normal, h_sample; + Vec3 ls, dir; float r1, r2; - Ray rr; + Photon ph; size_t total = 0, current = 0; for (vector::iterator it = s->m_lights.begin(); it != s->m_lights.end(); it++) { @@ -173,7 +179,7 @@ void PhotonTracer::build_photon_map(Scene * s, const size_t n_photons_per_ligth, al = static_cast(l); -#pragma omp parallel for schedule(dynamic, 1) private(l_sample, s_normal, h_sample, r1, r2, rr) shared(current) +#pragma omp parallel for schedule(dynamic, 1) private(l_sample, s_normal, h_sample, r1, r2) shared(current) for (size_t p = 0; p < n_photons_per_ligth; p++) { if (!specular) { l_sample = al->sample_at_surface(); @@ -181,15 +187,22 @@ void PhotonTracer::build_photon_map(Scene * s, const size_t n_photons_per_ligth, r1 = random01(); r2 = random01(); - h_sample = sample_hemisphere(r1, r2); + h_sample = normalize(sample_hemisphere(r1, r2)); rotate_sample(h_sample, s_normal); - rr = Ray(normalize(h_sample), l_sample + (h_sample * BIAS)); + ls = Vec3(l_sample.x, l_sample.y, l_sample.z); + dir = Vec3(h_sample.x, h_sample.y, h_sample.z); + ph = Photon(ls, dir, al->m_figure->m_mat->m_emission.r, al->m_figure->m_mat->m_emission.g, al->m_figure->m_mat->m_emission.b); } else { // TODO: Generate photon from light source in direction of specular reflective objects. } - trace_photon(rr, s, 0, specular); +#pragma omp critical + { + m_photon_map.addPhoton(ph); + } + + trace_photon(ph, s, 0); #pragma omp atomic current++; @@ -203,21 +216,20 @@ void PhotonTracer::build_photon_map(Scene * s, const size_t n_photons_per_ligth, m_photon_map.buildKdTree(); } -vec3 PhotonTracer::trace_photon(Ray &r, Scene * s, const unsigned int rec_level, const bool specular) { +void PhotonTracer::trace_photon(Photon & ph, Scene * s, const unsigned int rec_level) { Photon photon; - float t, _t; + float t, _t, red, green, blue; Figure * _f; - vec3 n, color, i_pos, ref, sample, dir_diff_color, dir_spec_color, ind_color, amb_color; - Vec3 p_pos; - Ray mv_r, sr, rr; - bool vis, is_area_light = false; + vec3 n, color, i_pos, sample, ph_dir, ph_pos; + Vec3 p_pos, p_dir; + Ray r; float kr, r1, r2; - AreaLight * al; t = numeric_limits::max(); _f = NULL; // Find the closest intersecting surface. + r = Ray(ph.direction.x, ph.direction.y, ph.direction.z, ph.position.x, ph.position.y, ph.position.z); for (size_t f = 0; f < s->m_figures.size(); f++) { if (s->m_figures[f]->intersect(r, _t) && _t < t) { t = _t; @@ -231,142 +243,65 @@ vec3 PhotonTracer::trace_photon(Ray &r, Scene * s, const unsigned int rec_level, i_pos = r.m_origin + (t * r.m_direction); n = _f->normal_at_int(r, t); - is_area_light = false; - // Check if the object is an area light; - for (vector::iterator it = s->m_lights.begin(); it != s->m_lights.end(); it++) { - if ((*it)->light_type() == Light::AREA && static_cast(*it)->m_figure == _f) - is_area_light = true; - } - - // If the object is an area light, return it's emission value. - if (is_area_light) { - p_pos = Vec3(i_pos.x, i_pos.y, i_pos.z); - photon = Photon(p_pos, _f->m_mat->m_emission.r, _f->m_mat->m_emission.g, _f->m_mat->m_emission.b); - -#pragma omp critical - { - m_photon_map.addPhoton(photon); - } - - return _f->m_mat->m_emission; - - // Check if the material is not reflective/refractive. - } else if (!_f->m_mat->m_refract) { - // Calculate the direct lighting. - for (size_t l = 0; l < s->m_lights.size(); l++) { - // For every light source - vis = true; - - if (s->m_lights[l]->light_type() == Light::INFINITESIMAL) { - // Cast a shadow ray to determine visibility. - sr = Ray(s->m_lights[l]->direction(i_pos), i_pos + (n * BIAS)); - - for (size_t f = 0; f < s->m_figures.size(); f++) { - if (s->m_figures[f]->intersect(sr, _t) && _t < s->m_lights[l]->distance(i_pos)) { - vis = false; - break; - } - } - - // Evaluate the shading model accounting for visibility. - dir_diff_color += vis ? s->m_lights[l]->diffuse(n, r, i_pos, *_f->m_mat) : vec3(0.0f); - dir_spec_color += vis ? s->m_lights[l]->specular(n, r, i_pos, *_f->m_mat) : vec3(0.0f); - - } else if (s->m_lights[l]->light_type() == Light::AREA) { - // Cast a shadow ray towards a sample point on the surface of the light source. - al = static_cast(s->m_lights[l]); - al->sample_at_surface(); - sr = Ray(al->direction(i_pos), i_pos + (n * BIAS)); - - for (size_t f = 0; f < s->m_figures.size(); f++) { - // Avoid self-intersection with the light source. - if (al->m_figure != s->m_figures[f]) { - if (s->m_figures[f]->intersect(sr, _t) && _t < al->distance(i_pos)) { - vis = false; - break; - } - } - } - - // Evaluate the shading model accounting for visibility. - dir_diff_color += vis ? s->m_lights[l]->diffuse(n, r, i_pos, *_f->m_mat) : vec3(0.0f); - dir_spec_color += vis ? s->m_lights[l]->specular(n, r, i_pos, *_f->m_mat) : vec3(0.0f); - } - } - - // Calculate indirect lighting contribution. + if (!_f->m_mat->m_refract && rec_level < m_max_depth){ if (rec_level < m_max_depth) { r1 = random01(); r2 = random01(); sample = sample_hemisphere(r1, r2); rotate_sample(sample, n); - rr = Ray(normalize(sample), i_pos + (sample * BIAS)); - ind_color += r1 * trace_ray(rr, s, rec_level + 1) / PDF; + normalize(sample); + } else + sample = vec3(0.0f); + + ph.getColor(red, green, blue); + color = (1.0f - _f->m_mat->m_rho) * (vec3(red, green, blue) * (_f->m_mat->m_diffuse / pi())); + p_pos = Vec3(i_pos.x, i_pos.y, i_pos.z); + p_dir = Vec3(sample.x, sample.y, sample.z); + photon = Photon(p_pos, p_dir, color.r, color.g, color.b); +#pragma omp critical + { + m_photon_map.addPhoton(photon); } - // Calculate environment light contribution - vis = true; + trace_photon(photon, s, rec_level + 1); + } - r1 = random01(); - r2 = random01(); - sample = sample_hemisphere(r1, r2); - rotate_sample(sample, n); - rr = Ray(normalize(sample), i_pos + (sample * BIAS)); + // Determine the specular reflection color. + if (!_f->m_mat->m_refract && _f->m_mat->m_rho > 0.0f && rec_level < m_max_depth) { + color = (_f->m_mat->m_rho) * vec3(red, green, blue); + i_pos += n * BIAS; + p_pos = Vec3(i_pos.x, i_pos.y, i_pos.z); + ph_dir = normalize(reflect(vec3(ph.direction.x, ph.direction.y, ph.direction.z), n)); + p_dir = Vec3(ph_dir.x, ph_dir.y, ph_dir.z); + photon = Photon(p_pos, p_dir, color.r, color.g, color.b); + trace_photon(photon, s, rec_level + 1); - // Cast a shadow ray to determine visibility. - for (size_t f = 0; f < s->m_figures.size(); f++) { - if (s->m_figures[f]->intersect(rr, _t)) { - vis = false; - break; - } - } - - amb_color = vis ? s->m_env->get_color(rr) * max(dot(n, rr.m_direction), 0.0f) / PDF : vec3(0.0f); - - // Add lighting. - color += ((dir_diff_color + ind_color + amb_color) * (_f->m_mat->m_diffuse / pi())) + (_f->m_mat->m_specular * dir_spec_color); - - //if (specular) { - // Determine the specular reflection color. - if (_f->m_mat->m_rho > 0.0f && rec_level < m_max_depth) { - rr = Ray(normalize(reflect(r.m_direction, n)), i_pos + n * BIAS); - color += _f->m_mat->m_rho * trace_ray(rr, s, rec_level + 1); - } else if (_f->m_mat->m_rho > 0.0f && rec_level >= m_max_depth) - return vec3(0.0f); - //} - - } else { + } else if (_f->m_mat->m_refract && rec_level >= m_max_depth) { // If the material has transmission enabled, calculate the Fresnel term. kr = fresnel(r.m_direction, n, r.m_ref_index, _f->m_mat->m_ref_index); // Determine the specular reflection color. if (kr > 0.0f && rec_level < m_max_depth) { - rr = Ray(normalize(reflect(r.m_direction, n)), i_pos + n * BIAS); - color += kr * trace_ray(rr, s, rec_level + 1); - } else if (rec_level >= m_max_depth) - return vec3(0.0f); + color = kr * vec3(red, green, blue); + i_pos += n * BIAS; + p_pos = Vec3(i_pos.x, i_pos.y, i_pos.z); + ph_dir = normalize(reflect(vec3(ph.direction.x, ph.direction.y, ph.direction.z), n)); + p_dir = Vec3(ph_dir.x, ph_dir.y, ph_dir.z); + photon = Photon(p_pos, p_dir, color.r, color.g, color.b); + trace_photon(photon, s, rec_level + 1); + + } // Determine the transmission color. if (_f->m_mat->m_refract && kr < 1.0f && rec_level < m_max_depth) { - rr = Ray(normalize(refract(r.m_direction, n, r.m_ref_index / _f->m_mat->m_ref_index)), i_pos - n * BIAS, _f->m_mat->m_ref_index); - color += (1.0f - kr) * trace_ray(rr, s, rec_level + 1); - } else if (rec_level >= m_max_depth) - return vec3(0.0f); - + color = (1.0f - kr) * vec3(red, green, blue); + i_pos -= n * (2 * BIAS); + p_pos = Vec3(i_pos.x, i_pos.y, i_pos.z); + ph_dir = normalize(refract(vec3(ph.direction.x, ph.direction.y, ph.direction.z), n, ph.ref_index / _f->m_mat->m_ref_index)); + p_dir = Vec3(ph_dir.x, ph_dir.y, ph_dir.z); + photon = Photon(p_pos, p_dir, color.r, color.g, color.b, _f->m_mat->m_ref_index); + trace_photon(photon, s, rec_level + 1); + } } - - color += _f->m_mat->m_emission; - - p_pos = Vec3(i_pos.x, i_pos.y, i_pos.z); - photon = Photon(p_pos, color.r, color.g, color.b); -#pragma omp critical - { - m_photon_map.addPhoton(photon); - } - - // Return final color. - return color; - - } else - return s->m_env->get_color(r); + } } diff --git a/photon_tracer.hpp b/photon_tracer.hpp index 37e00c8..9ccf8d9 100644 --- a/photon_tracer.hpp +++ b/photon_tracer.hpp @@ -18,7 +18,7 @@ public: private: float m_h_radius; kdTree m_photon_map; - vec3 trace_photon(Ray &r, Scene * s, const unsigned int rec_level, const bool specular = false); + void trace_photon(Photon & ph, Scene * s, const unsigned int rec_level); }; #endif diff --git a/whitted_tracer.cpp b/whitted_tracer.cpp index b7b7a06..9ca0794 100644 --- a/whitted_tracer.cpp +++ b/whitted_tracer.cpp @@ -88,7 +88,7 @@ vec3 WhittedTracer::trace_ray(Ray & r, Scene * s, unsigned int rec_level) const dir_spec_color += vis ? s->m_lights[l]->specular(n, r, i_pos, *_f->m_mat) : vec3(0.0f); } - color += (dir_diff_color * (_f->m_mat->m_diffuse / pi())) + (_f->m_mat->m_specular * dir_spec_color); + color += (1.0f - _f->m_mat->m_rho) * ((dir_diff_color * (_f->m_mat->m_diffuse / pi())) + (_f->m_mat->m_specular * dir_spec_color)); // Determine the specular reflection color. if (_f->m_mat->m_rho > 0.0f && rec_level < m_max_depth) {