Scene reader reads figures now.

This commit is contained in:
2017-01-18 21:46:24 -04:00
parent 5edccd4d30
commit d0ffec8f60
14 changed files with 596 additions and 387 deletions

View File

@@ -10,7 +10,7 @@ using namespace glm;
PathTracer::~PathTracer() { }
vec3 PathTracer::trace_ray(Ray & r, vector<Figure *> & v_figures, vector<Light *> & v_lights, Environment * e, unsigned int rec_level) const {
vec3 PathTracer::trace_ray(Ray & r, Scene * s, unsigned int rec_level) const {
float t, _t;
Figure * _f;
vec3 n, color, i_pos, ref, sample, dir_diff_color, dir_spec_color, ind_color, amb_color;
@@ -22,10 +22,10 @@ vec3 PathTracer::trace_ray(Ray & r, vector<Figure *> & v_figures, vector<Light *
_f = NULL;
// Find the closest intersecting surface.
for (size_t f = 0; f < v_figures.size(); f++) {
if (v_figures[f]->intersect(r, _t) && _t < t) {
for (size_t f = 0; f < s->m_figures.size(); f++) {
if (s->m_figures[f]->intersect(r, _t) && _t < t) {
t = _t;
_f = v_figures[f];
_f = s->m_figures[f];
}
}
@@ -38,22 +38,22 @@ vec3 PathTracer::trace_ray(Ray & r, vector<Figure *> & v_figures, vector<Light *
// Check if the material is not reflective/refractive.
if (!_f->m_mat->m_refract) {
// Calculate the direct lighting.
for (size_t l = 0; l < v_lights.size(); l++) {
for (size_t l = 0; l < s->m_lights.size(); l++) {
// For every light source
vis = true;
// Cast a shadow ray to determine visibility.
sr = Ray(v_lights[l]->direction(i_pos), i_pos + n * BIAS);
for (size_t f = 0; f < v_figures.size(); f++) {
if (v_figures[f]->intersect(sr, _t) && _t < v_lights[l]->distance(i_pos)) {
sr = Ray(s->m_lights[l]->direction(i_pos), i_pos + n * BIAS);
for (size_t f = 0; f < s->m_figures.size(); f++) {
if (s->m_figures[f]->intersect(sr, _t) && _t < s->m_lights[l]->distance(i_pos)) {
vis = false;
break;
}
}
// Evaluate the shading model accounting for visibility.
dir_diff_color += vis ? v_lights[l]->diffuse(n, r, i_pos, *_f->m_mat) : vec3(0.0f);
dir_spec_color += vis ? v_lights[l]->specular(n, r, i_pos, *_f->m_mat) : vec3(0.0f);
dir_diff_color += vis ? s->m_lights[l]->diffuse(n, r, i_pos, *_f->m_mat) : vec3(0.0f);
dir_spec_color += vis ? s->m_lights[l]->specular(n, r, i_pos, *_f->m_mat) : vec3(0.0f);
}
// Calculate indirect lighting contribution.
@@ -63,7 +63,7 @@ vec3 PathTracer::trace_ray(Ray & r, vector<Figure *> & v_figures, vector<Light *
sample = sample_hemisphere(r1, r2);
rotate_sample(sample, n);
rr = Ray(normalize(sample), i_pos + (sample * BIAS));
ind_color += r1 * trace_ray(rr, v_figures, v_lights, e, rec_level + 1) / PDF;
ind_color += r1 * trace_ray(rr, s, rec_level + 1) / PDF;
}
// Calculate environment light contribution
@@ -76,14 +76,14 @@ vec3 PathTracer::trace_ray(Ray & r, vector<Figure *> & v_figures, vector<Light *
rr = Ray(normalize(sample), i_pos + (sample * BIAS));
// Cast a shadow ray to determine visibility.
for (size_t f = 0; f < v_figures.size(); f++) {
if (v_figures[f]->intersect(rr, _t)) {
for (size_t f = 0; f < s->m_figures.size(); f++) {
if (s->m_figures[f]->intersect(rr, _t)) {
vis = false;
break;
}
}
amb_color = vis ? e->get_color(rr) * max(dot(n, rr.m_direction), 0.0f) / PDF : vec3(0.0f);
amb_color = vis ? s->m_env->get_color(rr) * max(dot(n, rr.m_direction), 0.0f) / PDF : vec3(0.0f);
// Add lighting.
color += ((dir_diff_color + ind_color + amb_color) * (_f->m_mat->m_diffuse / pi<float>())) + (_f->m_mat->m_specular * dir_spec_color);
@@ -91,7 +91,7 @@ vec3 PathTracer::trace_ray(Ray & r, vector<Figure *> & v_figures, vector<Light *
// Determine the specular reflection color.
if (_f->m_mat->m_rho > 0.0f && rec_level < m_max_depth) {
rr = Ray(normalize(reflect(r.m_direction, n)), i_pos + n * BIAS);
color += _f->m_mat->m_rho * trace_ray(rr, v_figures, v_lights, e, rec_level + 1);
color += _f->m_mat->m_rho * trace_ray(rr, s, rec_level + 1);
} else if (_f->m_mat->m_rho > 0.0f && rec_level >= m_max_depth)
return vec3(0.0f);
@@ -102,14 +102,14 @@ vec3 PathTracer::trace_ray(Ray & r, vector<Figure *> & v_figures, vector<Light *
// Determine the specular reflection color.
if (kr > 0.0f && rec_level < m_max_depth) {
rr = Ray(normalize(reflect(r.m_direction, n)), i_pos + n * BIAS);
color += kr * trace_ray(rr, v_figures, v_lights, e, rec_level + 1);
color += kr * trace_ray(rr, s, rec_level + 1);
} else if (rec_level >= m_max_depth)
return vec3(0.0f);
// Determine the transmission color.
if (_f->m_mat->m_refract && kr < 1.0f && rec_level < m_max_depth) {
rr = Ray(normalize(refract(r.m_direction, n, r.m_ref_index / _f->m_mat->m_ref_index)), i_pos - n * BIAS, _f->m_mat->m_ref_index);
color += (1.0f - kr) * trace_ray(rr, v_figures, v_lights, e, rec_level + 1);
color += (1.0f - kr) * trace_ray(rr, s, rec_level + 1);
} else if (rec_level >= m_max_depth)
return vec3(0.0f);
@@ -118,10 +118,6 @@ vec3 PathTracer::trace_ray(Ray & r, vector<Figure *> & v_figures, vector<Light *
// Return final color.
return _f->m_mat->m_emission + color;
} else {
if (e != NULL)
return e->get_color(r);
else
return vec3(0.0f);
}
} else
return s->m_env->get_color(r);
}