Scene reader reads figures now.
This commit is contained in:
@@ -10,7 +10,7 @@ using namespace glm;
|
||||
|
||||
PathTracer::~PathTracer() { }
|
||||
|
||||
vec3 PathTracer::trace_ray(Ray & r, vector<Figure *> & v_figures, vector<Light *> & v_lights, Environment * e, unsigned int rec_level) const {
|
||||
vec3 PathTracer::trace_ray(Ray & r, Scene * s, unsigned int rec_level) const {
|
||||
float t, _t;
|
||||
Figure * _f;
|
||||
vec3 n, color, i_pos, ref, sample, dir_diff_color, dir_spec_color, ind_color, amb_color;
|
||||
@@ -22,10 +22,10 @@ vec3 PathTracer::trace_ray(Ray & r, vector<Figure *> & v_figures, vector<Light *
|
||||
_f = NULL;
|
||||
|
||||
// Find the closest intersecting surface.
|
||||
for (size_t f = 0; f < v_figures.size(); f++) {
|
||||
if (v_figures[f]->intersect(r, _t) && _t < t) {
|
||||
for (size_t f = 0; f < s->m_figures.size(); f++) {
|
||||
if (s->m_figures[f]->intersect(r, _t) && _t < t) {
|
||||
t = _t;
|
||||
_f = v_figures[f];
|
||||
_f = s->m_figures[f];
|
||||
}
|
||||
}
|
||||
|
||||
@@ -38,22 +38,22 @@ vec3 PathTracer::trace_ray(Ray & r, vector<Figure *> & v_figures, vector<Light *
|
||||
// Check if the material is not reflective/refractive.
|
||||
if (!_f->m_mat->m_refract) {
|
||||
// Calculate the direct lighting.
|
||||
for (size_t l = 0; l < v_lights.size(); l++) {
|
||||
for (size_t l = 0; l < s->m_lights.size(); l++) {
|
||||
// For every light source
|
||||
vis = true;
|
||||
|
||||
// Cast a shadow ray to determine visibility.
|
||||
sr = Ray(v_lights[l]->direction(i_pos), i_pos + n * BIAS);
|
||||
for (size_t f = 0; f < v_figures.size(); f++) {
|
||||
if (v_figures[f]->intersect(sr, _t) && _t < v_lights[l]->distance(i_pos)) {
|
||||
sr = Ray(s->m_lights[l]->direction(i_pos), i_pos + n * BIAS);
|
||||
for (size_t f = 0; f < s->m_figures.size(); f++) {
|
||||
if (s->m_figures[f]->intersect(sr, _t) && _t < s->m_lights[l]->distance(i_pos)) {
|
||||
vis = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Evaluate the shading model accounting for visibility.
|
||||
dir_diff_color += vis ? v_lights[l]->diffuse(n, r, i_pos, *_f->m_mat) : vec3(0.0f);
|
||||
dir_spec_color += vis ? v_lights[l]->specular(n, r, i_pos, *_f->m_mat) : vec3(0.0f);
|
||||
dir_diff_color += vis ? s->m_lights[l]->diffuse(n, r, i_pos, *_f->m_mat) : vec3(0.0f);
|
||||
dir_spec_color += vis ? s->m_lights[l]->specular(n, r, i_pos, *_f->m_mat) : vec3(0.0f);
|
||||
}
|
||||
|
||||
// Calculate indirect lighting contribution.
|
||||
@@ -63,7 +63,7 @@ vec3 PathTracer::trace_ray(Ray & r, vector<Figure *> & v_figures, vector<Light *
|
||||
sample = sample_hemisphere(r1, r2);
|
||||
rotate_sample(sample, n);
|
||||
rr = Ray(normalize(sample), i_pos + (sample * BIAS));
|
||||
ind_color += r1 * trace_ray(rr, v_figures, v_lights, e, rec_level + 1) / PDF;
|
||||
ind_color += r1 * trace_ray(rr, s, rec_level + 1) / PDF;
|
||||
}
|
||||
|
||||
// Calculate environment light contribution
|
||||
@@ -76,14 +76,14 @@ vec3 PathTracer::trace_ray(Ray & r, vector<Figure *> & v_figures, vector<Light *
|
||||
rr = Ray(normalize(sample), i_pos + (sample * BIAS));
|
||||
|
||||
// Cast a shadow ray to determine visibility.
|
||||
for (size_t f = 0; f < v_figures.size(); f++) {
|
||||
if (v_figures[f]->intersect(rr, _t)) {
|
||||
for (size_t f = 0; f < s->m_figures.size(); f++) {
|
||||
if (s->m_figures[f]->intersect(rr, _t)) {
|
||||
vis = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
amb_color = vis ? e->get_color(rr) * max(dot(n, rr.m_direction), 0.0f) / PDF : vec3(0.0f);
|
||||
amb_color = vis ? s->m_env->get_color(rr) * max(dot(n, rr.m_direction), 0.0f) / PDF : vec3(0.0f);
|
||||
|
||||
// Add lighting.
|
||||
color += ((dir_diff_color + ind_color + amb_color) * (_f->m_mat->m_diffuse / pi<float>())) + (_f->m_mat->m_specular * dir_spec_color);
|
||||
@@ -91,7 +91,7 @@ vec3 PathTracer::trace_ray(Ray & r, vector<Figure *> & v_figures, vector<Light *
|
||||
// Determine the specular reflection color.
|
||||
if (_f->m_mat->m_rho > 0.0f && rec_level < m_max_depth) {
|
||||
rr = Ray(normalize(reflect(r.m_direction, n)), i_pos + n * BIAS);
|
||||
color += _f->m_mat->m_rho * trace_ray(rr, v_figures, v_lights, e, rec_level + 1);
|
||||
color += _f->m_mat->m_rho * trace_ray(rr, s, rec_level + 1);
|
||||
} else if (_f->m_mat->m_rho > 0.0f && rec_level >= m_max_depth)
|
||||
return vec3(0.0f);
|
||||
|
||||
@@ -102,14 +102,14 @@ vec3 PathTracer::trace_ray(Ray & r, vector<Figure *> & v_figures, vector<Light *
|
||||
// Determine the specular reflection color.
|
||||
if (kr > 0.0f && rec_level < m_max_depth) {
|
||||
rr = Ray(normalize(reflect(r.m_direction, n)), i_pos + n * BIAS);
|
||||
color += kr * trace_ray(rr, v_figures, v_lights, e, rec_level + 1);
|
||||
color += kr * trace_ray(rr, s, rec_level + 1);
|
||||
} else if (rec_level >= m_max_depth)
|
||||
return vec3(0.0f);
|
||||
|
||||
// Determine the transmission color.
|
||||
if (_f->m_mat->m_refract && kr < 1.0f && rec_level < m_max_depth) {
|
||||
rr = Ray(normalize(refract(r.m_direction, n, r.m_ref_index / _f->m_mat->m_ref_index)), i_pos - n * BIAS, _f->m_mat->m_ref_index);
|
||||
color += (1.0f - kr) * trace_ray(rr, v_figures, v_lights, e, rec_level + 1);
|
||||
color += (1.0f - kr) * trace_ray(rr, s, rec_level + 1);
|
||||
} else if (rec_level >= m_max_depth)
|
||||
return vec3(0.0f);
|
||||
|
||||
@@ -118,10 +118,6 @@ vec3 PathTracer::trace_ray(Ray & r, vector<Figure *> & v_figures, vector<Light *
|
||||
// Return final color.
|
||||
return _f->m_mat->m_emission + color;
|
||||
|
||||
} else {
|
||||
if (e != NULL)
|
||||
return e->get_color(r);
|
||||
else
|
||||
return vec3(0.0f);
|
||||
}
|
||||
} else
|
||||
return s->m_env->get_color(r);
|
||||
}
|
||||
|
Reference in New Issue
Block a user