Made Tracer an abstract class.
This commit is contained in:
2
Makefile
2
Makefile
@@ -1,6 +1,6 @@
|
||||
CXX = g++
|
||||
TARGET = ray
|
||||
OBJECTS = main.o disk.o plane.o sphere.o directional_light.o point_light.o tracer.o
|
||||
OBJECTS = main.o disk.o plane.o sphere.o directional_light.o point_light.o tracer.o path_tracer.o
|
||||
DEPENDS = $(OBJECTS:.o=.d)
|
||||
CXXFLAGS = -ansi -pedantic -Wall -DGLM_FORCE_RADIANS -fopenmp
|
||||
LDLIBS =
|
||||
|
17
main.cpp
17
main.cpp
@@ -18,6 +18,7 @@
|
||||
#include "directional_light.hpp"
|
||||
#include "point_light.hpp"
|
||||
#include "tracer.hpp"
|
||||
#include "path_tracer.hpp"
|
||||
|
||||
using namespace std;
|
||||
using namespace glm;
|
||||
@@ -41,9 +42,9 @@ int main(int argc, char ** argv) {
|
||||
vec2 sample;
|
||||
vector<Figure *> figures;
|
||||
vector<Light *> lights;
|
||||
Tracer tracer;
|
||||
int total;
|
||||
int current = 0;
|
||||
Tracer * tracer;
|
||||
size_t total;
|
||||
size_t current = 0;
|
||||
mat4x4 i_model_view;
|
||||
vec4 dir, orig;
|
||||
|
||||
@@ -97,7 +98,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
scene_2(figures, lights, i_model_view);
|
||||
|
||||
tracer = Tracer(g_h, g_w, g_fov, true);
|
||||
tracer = static_cast<Tracer *>(new PathTracer(g_h, g_w, g_fov, true));
|
||||
|
||||
total = g_h * g_w * g_samples;
|
||||
|
||||
@@ -105,11 +106,11 @@ int main(int argc, char ** argv) {
|
||||
for (int i = 0; i < g_h; i++) {
|
||||
for (int j = 0; j < g_w; j++) {
|
||||
for (int k = 0; k < g_samples; k++) {
|
||||
sample = tracer.sample_pixel(i, j);
|
||||
sample = tracer->sample_pixel(i, j);
|
||||
dir = i_model_view * normalize(vec4(sample, -1.0f, 1.0f) - vec4(0.0f, 0.0f, 0.0f, 1.0f));
|
||||
orig = i_model_view * vec4(0.0f, 0.0f, 0.0f, 1.0f);
|
||||
r = Ray(dir.x, dir.y, dir.z, orig.x, orig.y, orig.z);
|
||||
image[i][j] += tracer.trace_ray(r, figures, lights, 0);
|
||||
image[i][j] += tracer->trace_ray(r, figures, lights, 0);
|
||||
#pragma omp critical
|
||||
{
|
||||
current++;
|
||||
@@ -119,11 +120,13 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
#pragma omp critical
|
||||
{
|
||||
cout << "\r" << setw(3) << static_cast<int>((static_cast<float>(current) / static_cast<float>(total)) * 100.0f) << "% done";
|
||||
cout << "\r" << setw(3) << static_cast<size_t>((static_cast<double>(current) / static_cast<double>(total)) * 100.0) << "% done";
|
||||
}
|
||||
}
|
||||
cout << endl;
|
||||
|
||||
delete tracer;
|
||||
|
||||
for (size_t i = 0; i < figures.size(); i++) {
|
||||
delete figures[i];
|
||||
}
|
||||
|
99
path_tracer.cpp
Normal file
99
path_tracer.cpp
Normal file
@@ -0,0 +1,99 @@
|
||||
#include <limits>
|
||||
|
||||
#include <glm/gtc/constants.hpp>
|
||||
|
||||
#include "path_tracer.hpp"
|
||||
|
||||
using std::numeric_limits;
|
||||
using namespace glm;
|
||||
|
||||
PathTracer::~PathTracer() { }
|
||||
|
||||
vec3 PathTracer::trace_ray(Ray & r, vector<Figure *> & v_figures, vector<Light *> & v_lights, unsigned int rec_level) const {
|
||||
float t, _t;
|
||||
Figure * _f;
|
||||
vec3 n, color, i_pos, ref, sample, dir_diff_color, dir_spec_color, ind_color;
|
||||
Ray mv_r, sr, rr;
|
||||
bool vis;
|
||||
float kr, r1, r2;
|
||||
|
||||
t = numeric_limits<float>::max();
|
||||
_f = NULL;
|
||||
|
||||
// Find the closest intersecting surface.
|
||||
for (size_t f = 0; f < v_figures.size(); f++) {
|
||||
if (v_figures[f]->intersect(r, _t) && _t < t) {
|
||||
t = _t;
|
||||
_f = v_figures[f];
|
||||
}
|
||||
}
|
||||
|
||||
// If this ray intersects something:
|
||||
if (_f != NULL) {
|
||||
// Take the intersection point and the normal of the surface at that point.
|
||||
i_pos = r.m_origin + (t * r.m_direction);
|
||||
n = _f->normal_at_int(r, t);
|
||||
|
||||
// Check if the material is not reflective/refractive.
|
||||
if( !_f->m_mat.m_refract && _f->m_mat.m_rho == 0.0f) {
|
||||
// Calculate the direct lighting.
|
||||
for (size_t l = 0; l < v_lights.size(); l++) {
|
||||
// For every light source
|
||||
vis = true;
|
||||
|
||||
// Cast a shadow ray to determine visibility.
|
||||
sr = Ray(v_lights[l]->direction(i_pos), i_pos + n * BIAS);
|
||||
for (size_t f = 0; f < v_figures.size(); f++) {
|
||||
if (v_figures[f]->intersect(sr, _t) && _t < v_lights[l]->distance(i_pos)) {
|
||||
vis = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Evaluate the shading model accounting for visibility.
|
||||
dir_diff_color += (vis ? 1.0f : 0.0f) * v_lights[l]->diffuse(n, r, t, _f->m_mat);
|
||||
dir_spec_color += (vis ? 1.0f : 0.0f) * v_lights[l]->specular(n, r, t, _f->m_mat);
|
||||
}
|
||||
|
||||
// If enabled, calculate indirect lighting contribution.
|
||||
if (indirect_l && rec_level < MAX_RECURSION) {
|
||||
r1 = random01();
|
||||
r2 = random01();
|
||||
sample = sample_hemisphere(r1, r2);
|
||||
rotate_sample(sample, n);
|
||||
rr = Ray(normalize(sample), i_pos + (sample * BIAS));
|
||||
ind_color += r1 * trace_ray(rr, v_figures, v_lights, rec_level + 1) / (1.0f / (2.0f * pi<float>()));
|
||||
}
|
||||
|
||||
color += ((dir_diff_color + ind_color) * (_f->m_mat.m_diffuse / pi<float>())) + dir_spec_color;
|
||||
|
||||
} else {
|
||||
// If the material has reflection/transmission enabled.
|
||||
// Calculate the Fresnel term if the surface is refracting.
|
||||
if (_f->m_mat.m_refract)
|
||||
kr = fresnel(r.m_direction, n, r.m_ref_index, _f->m_mat.m_ref_index);
|
||||
else
|
||||
kr = _f->m_mat.m_rho;
|
||||
|
||||
// Determinte the specular reflection color.
|
||||
if (kr > 0.0f && rec_level < MAX_RECURSION) {
|
||||
rr = Ray(normalize(reflect(r.m_direction, n)), i_pos + n * BIAS);
|
||||
color += _f->m_mat.m_rho * kr * trace_ray(rr, v_figures, v_lights, rec_level + 1);
|
||||
} else if (rec_level >= MAX_RECURSION)
|
||||
return vec3(0.0f);
|
||||
|
||||
// Determine the transmission color.
|
||||
if (_f->m_mat.m_refract && kr < 1.0f && rec_level < MAX_RECURSION) {
|
||||
rr = Ray(normalize(refract(r.m_direction, n, r.m_ref_index / _f->m_mat.m_ref_index)), i_pos - n * BIAS, _f->m_mat.m_ref_index);
|
||||
color += (1.0f - _f->m_mat.m_rho) * (1.0f - kr) * trace_ray(rr, v_figures, v_lights, rec_level + 1);
|
||||
} else if (rec_level >= MAX_RECURSION)
|
||||
return vec3(0.0f);
|
||||
|
||||
}
|
||||
|
||||
// Return final color.
|
||||
return clamp(color, 0.0f, 1.0f);
|
||||
|
||||
} else
|
||||
return vec3(BCKG_COLOR);
|
||||
}
|
20
path_tracer.hpp
Normal file
20
path_tracer.hpp
Normal file
@@ -0,0 +1,20 @@
|
||||
#pragma once
|
||||
#ifndef PATH_TRACER_HPP
|
||||
#define PATH_TRACER_HPP
|
||||
|
||||
#include "tracer.hpp"
|
||||
|
||||
class PathTracer: public Tracer {
|
||||
public:
|
||||
bool indirect_l;
|
||||
|
||||
PathTracer(): Tracer(), indirect_l(false) { }
|
||||
|
||||
PathTracer(int h, int w, float fov, bool il): Tracer(h, w, fov), indirect_l(il) { };
|
||||
|
||||
virtual ~PathTracer();
|
||||
|
||||
virtual vec3 trace_ray(Ray & r, vector<Figure *> & v_figures, vector<Light *> & v_lights, unsigned int rec_level) const;
|
||||
};
|
||||
|
||||
#endif
|
103
tracer.cpp
103
tracer.cpp
@@ -1,26 +1,18 @@
|
||||
#include <iostream>
|
||||
#include <limits>
|
||||
#include <cstdlib>
|
||||
|
||||
#include <glm/gtc/constants.hpp>
|
||||
|
||||
#include "tracer.hpp"
|
||||
|
||||
#define MAX_RECURSION 3
|
||||
#define BIAS 0.000001f
|
||||
|
||||
using namespace std;
|
||||
|
||||
using std::numeric_limits;
|
||||
using namespace glm;
|
||||
|
||||
static const vec3 BCKG_COLOR = vec3(0.0f);
|
||||
const vec3 BCKG_COLOR = vec3(0.0f, 0.2f, 0.6f);
|
||||
|
||||
static inline float random01() {
|
||||
float Tracer::random01() const {
|
||||
return static_cast<float>(rand()) / static_cast<float>(RAND_MAX);
|
||||
}
|
||||
|
||||
static float fresnel(const vec3 & i, const vec3 & n, const float ir1, const float ir2) {
|
||||
float Tracer::fresnel(const vec3 & i, const vec3 & n, const float ir1, const float ir2) const {
|
||||
float cos_t1 = dot(i, n);
|
||||
float cos_t2 = dot(normalize(refract(i, n, ir1 / ir2)), n);
|
||||
float sin_t2 = (ir1 / ir2) * sqrt(1.0f - (cos_t2 * cos_t2));
|
||||
@@ -48,95 +40,6 @@ vec2 Tracer::sample_pixel(int i, int j) const {
|
||||
return vec2(pxS, pyS);
|
||||
}
|
||||
|
||||
vec3 Tracer::trace_ray(Ray & r, vector<Figure *> & v_figures, vector<Light *> & v_lights, unsigned int rec_level) const {
|
||||
float t, _t;
|
||||
Figure * _f;
|
||||
vec3 n, color, i_pos, ref, sample, dir_diff_color, dir_spec_color, ind_color;
|
||||
Ray mv_r, sr, rr;
|
||||
bool vis;
|
||||
float kr, r1, r2;
|
||||
|
||||
t = numeric_limits<float>::max();
|
||||
_f = NULL;
|
||||
|
||||
// Find the closest intersecting surface.
|
||||
for (size_t f = 0; f < v_figures.size(); f++) {
|
||||
if (v_figures[f]->intersect(r, _t) && _t < t) {
|
||||
t = _t;
|
||||
_f = v_figures[f];
|
||||
}
|
||||
}
|
||||
|
||||
// If this ray intersects something:
|
||||
if (_f != NULL) {
|
||||
// Take the intersection point and the normal of the surface at that point.
|
||||
i_pos = r.m_origin + (t * r.m_direction);
|
||||
n = _f->normal_at_int(r, t);
|
||||
|
||||
// Check if the material is not reflective/refractive.
|
||||
if( !_f->m_mat.m_refract && _f->m_mat.m_rho == 0.0f) {
|
||||
// Calculate the direct lighting.
|
||||
for (size_t l = 0; l < v_lights.size(); l++) {
|
||||
// For every light source
|
||||
vis = true;
|
||||
|
||||
// Cast a shadow ray to determine visibility.
|
||||
sr = Ray(v_lights[l]->direction(i_pos), i_pos + n * BIAS);
|
||||
for (size_t f = 0; f < v_figures.size(); f++) {
|
||||
if (v_figures[f]->intersect(sr, _t) && _t < v_lights[l]->distance(i_pos)) {
|
||||
vis = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Evaluate the shading model accounting for visibility.
|
||||
dir_diff_color += (vis ? 1.0f : 0.0f) * v_lights[l]->diffuse(n, r, t, _f->m_mat);
|
||||
dir_spec_color += (vis ? 1.0f : 0.0f) * v_lights[l]->specular(n, r, t, _f->m_mat);
|
||||
}
|
||||
|
||||
// If enabled, calculate indirect lighting contribution.
|
||||
if (indirect_l && rec_level < MAX_RECURSION) {
|
||||
r1 = random01();
|
||||
r2 = random01();
|
||||
sample = sample_hemisphere(r1, r2);
|
||||
rotate_sample(sample, n);
|
||||
rr = Ray(normalize(sample), i_pos + (sample * BIAS));
|
||||
ind_color += r1 * trace_ray(rr, v_figures, v_lights, rec_level + 1) / (1.0f / (2.0f * pi<float>()));
|
||||
}
|
||||
|
||||
color += ((dir_diff_color + ind_color) * (_f->m_mat.m_diffuse / pi<float>())) + dir_spec_color;
|
||||
|
||||
} else {
|
||||
// If the material has reflection/transmission enabled.
|
||||
// Calculate the Fresnel term if the surface is refracting.
|
||||
if (_f->m_mat.m_refract)
|
||||
kr = fresnel(r.m_direction, n, r.m_ref_index, _f->m_mat.m_ref_index);
|
||||
else
|
||||
kr = _f->m_mat.m_rho;
|
||||
|
||||
// Determinte the specular reflection color.
|
||||
if (kr > 0.0f && rec_level < MAX_RECURSION) {
|
||||
rr = Ray(normalize(reflect(r.m_direction, n)), i_pos + n * BIAS);
|
||||
color += _f->m_mat.m_rho * kr * trace_ray(rr, v_figures, v_lights, rec_level + 1);
|
||||
} else if (rec_level >= MAX_RECURSION)
|
||||
return vec3(0.0f);
|
||||
|
||||
// Determine the transmission color.
|
||||
if (_f->m_mat.m_refract && kr < 1.0f && rec_level < MAX_RECURSION) {
|
||||
rr = Ray(normalize(refract(r.m_direction, n, r.m_ref_index / _f->m_mat.m_ref_index)), i_pos - n * BIAS, _f->m_mat.m_ref_index);
|
||||
color += (1.0f - _f->m_mat.m_rho) * (1.0f - kr) * trace_ray(rr, v_figures, v_lights, rec_level + 1);
|
||||
} else if (rec_level >= MAX_RECURSION)
|
||||
return vec3(0.0f);
|
||||
|
||||
}
|
||||
|
||||
// Return final color.
|
||||
return clamp(color, 0.0f, 1.0f);
|
||||
|
||||
} else
|
||||
return vec3(BCKG_COLOR);
|
||||
}
|
||||
|
||||
/* Helper functions pretty much taken from scratchapixel.com */
|
||||
void Tracer::create_coords_system(const vec3 &n, vec3 &nt, vec3 &nb) const {
|
||||
if (abs(n.x) > abs(n.y))
|
||||
|
21
tracer.hpp
21
tracer.hpp
@@ -13,7 +13,11 @@
|
||||
using std::vector;
|
||||
using glm::vec2;
|
||||
using glm::vec3;
|
||||
using glm::mat4x4;
|
||||
|
||||
#define MAX_RECURSION 3
|
||||
#define BIAS 0.000001f
|
||||
|
||||
extern const vec3 BCKG_COLOR;
|
||||
|
||||
class Tracer {
|
||||
public:
|
||||
@@ -21,18 +25,21 @@ public:
|
||||
int m_w;
|
||||
float m_fov;
|
||||
float m_a_ratio;
|
||||
bool indirect_l;
|
||||
|
||||
Tracer(): m_h(480), m_w(640), m_fov(90.0f), m_a_ratio(640.0f / 480.0f), indirect_l(false) { }
|
||||
Tracer(): m_h(480), m_w(640), m_fov(90.0f), m_a_ratio(640.0f / 480.0f) { }
|
||||
|
||||
Tracer(int h, int w, float fov, bool il): m_h(h), m_w(w), m_fov(fov), indirect_l(il) {
|
||||
Tracer(int h, int w, float fov): m_h(h), m_w(w), m_fov(fov) {
|
||||
m_a_ratio = static_cast<float>(w) / static_cast<float>(h);
|
||||
};
|
||||
|
||||
vec2 sample_pixel(int i, int j) const;
|
||||
vec3 trace_ray(Ray & r, vector<Figure *> & v_figures, vector<Light *> & v_lights, unsigned int rec_level) const;
|
||||
virtual ~Tracer() { }
|
||||
|
||||
private:
|
||||
vec2 sample_pixel(int i, int j) const;
|
||||
virtual vec3 trace_ray(Ray & r, vector<Figure *> & v_figures, vector<Light *> & v_lights, unsigned int rec_level) const = 0;
|
||||
|
||||
protected:
|
||||
float random01() const;
|
||||
float fresnel(const vec3 & i, const vec3 & n, const float ir1, const float ir2) const;
|
||||
void create_coords_system(const vec3 &n, vec3 &nt, vec3 &nb) const;
|
||||
vec3 sample_hemisphere(const float r1, const float r2) const;
|
||||
void rotate_sample(vec3 & sample, const vec3 & n) const;
|
||||
|
Reference in New Issue
Block a user