#include #include #include #include #include #include "photon_tracer.hpp" #include "sampling.hpp" #include "area_light.hpp" using std::cout; using std::endl; using std::setw; using std::vector; using std::numeric_limits; using namespace glm; #define ANSI_BOLD_YELLOW "\x1b[1;33m" #define ANSI_RESET_STYLE "\x1b[m" PhotonTracer::~PhotonTracer() { } vec3 PhotonTracer::trace_ray(Ray & r, Scene * s, unsigned int rec_level) const { float t, _t; Figure * _f; vec3 n, color, i_pos, ref, dir_diff_color, dir_spec_color, p_contrib; Ray mv_r, sr, rr; bool vis, is_area_light; float kr; AreaLight * al; Vec3 mn; Vec3 mx; vector photons; float red, green, blue; t = numeric_limits::max(); _f = NULL; // Find the closest intersecting surface. for (size_t f = 0; f < s->m_figures.size(); f++) { if (s->m_figures[f]->intersect(r, _t) && _t < t) { t = _t; _f = s->m_figures[f]; } } // If this ray intersects something: if (_f != NULL) { // Take the intersection point and the normal of the surface at that point. i_pos = r.m_origin + (t * r.m_direction); n = _f->normal_at_int(r, t); is_area_light = false; // Check if the object is an area light; for (size_t l = 0; l < s->m_lights.size(); l++) { if (s->m_lights[l]->light_type() == Light::AREA && static_cast(s->m_lights[l])->m_figure == _f) is_area_light = true; } // If the object is an area light, return it's emission value. if (is_area_light) { return _f->m_mat->m_emission; // Check if the material is not reflective/refractive. } else if (!_f->m_mat->m_refract) { // Calculate the direct lighting. for (size_t l = 0; l < s->m_lights.size(); l++) { // For every light source vis = true; if (s->m_lights[l]->light_type() == Light::INFINITESIMAL) { // Cast a shadow ray to determine visibility. sr = Ray(s->m_lights[l]->direction(i_pos), i_pos + n * BIAS); for (size_t f = 0; f < s->m_figures.size(); f++) { if (s->m_figures[f]->intersect(sr, _t) && _t < s->m_lights[l]->distance(i_pos)) { vis = false; break; } } } else if (s->m_lights[l]->light_type() == Light::AREA) { // Cast a shadow ray towards a sample point on the surface of the light source. al = static_cast(s->m_lights[l]); al->sample_at_surface(); sr = Ray(al->direction(i_pos), i_pos + (n * BIAS)); for (size_t f = 0; f < s->m_figures.size(); f++) { // Avoid self-intersection with the light source. if (al->m_figure != s->m_figures[f]) { if (s->m_figures[f]->intersect(sr, _t) && _t < al->distance(i_pos)) { vis = false; break; } } } } // Evaluate the shading model accounting for visibility. dir_diff_color += vis ? s->m_lights[l]->diffuse(n, r, i_pos, *_f->m_mat) : vec3(0.0f); dir_spec_color += vis ? s->m_lights[l]->specular(n, r, i_pos, *_f->m_mat) : vec3(0.0f); } color += (dir_diff_color * (_f->m_mat->m_diffuse / pi())) + (_f->m_mat->m_specular * dir_spec_color); // Determine the specular reflection color. if (_f->m_mat->m_rho > 0.0f && rec_level < m_max_depth) { rr = Ray(normalize(reflect(r.m_direction, n)), i_pos + n * BIAS); color += _f->m_mat->m_rho * trace_ray(rr, s, rec_level + 1); } else if (_f->m_mat->m_rho > 0.0f && rec_level >= m_max_depth) return vec3(0.0f); // TODO: Change photon map search method for hemisphere search. mn = Vec3(i_pos.x - m_h_radius, i_pos.y - m_h_radius, i_pos.z - m_h_radius); mx = Vec3(i_pos.x + m_h_radius, i_pos.y + m_h_radius, i_pos.z + m_h_radius); photons = m_photon_map.findInRange(mn, mx); for (vector::iterator it = photons.begin(); it != photons.end(); it++) { (*it).getColor(red, green, blue); p_contrib += vec3(red, green, blue); } p_contrib /= pi() * (m_h_radius * m_h_radius); color += p_contrib; } else { // If the material has transmission enabled, calculate the Fresnel term. kr = fresnel(r.m_direction, n, r.m_ref_index, _f->m_mat->m_ref_index); // Determine the specular reflection color. if (kr > 0.0f && rec_level < m_max_depth) { rr = Ray(normalize(reflect(r.m_direction, n)), i_pos + n * BIAS); color += kr * trace_ray(rr, s, rec_level + 1); } else if (rec_level >= m_max_depth) return vec3(0.0f); // Determine the transmission color. if (_f->m_mat->m_refract && kr < 1.0f && rec_level < m_max_depth) { rr = Ray(normalize(refract(r.m_direction, n, r.m_ref_index / _f->m_mat->m_ref_index)), i_pos - n * BIAS, _f->m_mat->m_ref_index); color += (1.0f - kr) * trace_ray(rr, s, rec_level + 1); } else if (rec_level >= m_max_depth) return vec3(0.0f); } // Return final color. return _f->m_mat->m_emission + color; } else return s->m_env->get_color(r); } void PhotonTracer::build_photon_map(Scene * s, const size_t n_photons_per_ligth, const bool specular) { Light * l; AreaLight * al; vec3 l_sample, s_normal, h_sample; float r1, r2; Ray rr; size_t total = 0, current = 0; for (vector::iterator it = s->m_lights.begin(); it != s->m_lights.end(); it++) { total += (*it)->light_type() == Light::AREA ? 1 : 0; } total *= n_photons_per_ligth; cout << "Tracing a total of " << ANSI_BOLD_YELLOW << total << ANSI_RESET_STYLE << " primary photons:" << endl; for (vector::iterator it = s->m_lights.begin(); it != s->m_lights.end(); it++) { l = *it; /* Only area lights supported right now. */ if (l->light_type() != Light::AREA) continue; al = static_cast(l); #pragma omp parallel for schedule(dynamic, 1) private(l_sample, s_normal, h_sample, r1, r2, rr) shared(current) for (size_t p = 0; p < n_photons_per_ligth; p++) { if (!specular) { l_sample = al->sample_at_surface(); s_normal = al->normal_at_last_sample(); r1 = random01(); r2 = random01(); h_sample = sample_hemisphere(r1, r2); rotate_sample(h_sample, s_normal); rr = Ray(normalize(h_sample), l_sample + (h_sample * BIAS)); } else { // TODO: Generate photon from light source in direction of specular reflective objects. } trace_photon(rr, s, 0, specular); #pragma omp atomic current++; } cout << "\r" << setw(3) << static_cast((static_cast(current) / static_cast(total)) * 100.0) << "% done."; } cout << endl; cout << "Building photon map Kd-tree." << endl; m_photon_map.buildKdTree(); } vec3 PhotonTracer::trace_photon(Ray &r, Scene * s, const unsigned int rec_level, const bool specular) { Photon photon; float t, _t; Figure * _f; vec3 n, color, i_pos, ref, sample, dir_diff_color, dir_spec_color, ind_color, amb_color; Vec3 p_pos; Ray mv_r, sr, rr; bool vis, is_area_light = false; float kr, r1, r2; AreaLight * al; t = numeric_limits::max(); _f = NULL; // Find the closest intersecting surface. for (size_t f = 0; f < s->m_figures.size(); f++) { if (s->m_figures[f]->intersect(r, _t) && _t < t) { t = _t; _f = s->m_figures[f]; } } // If this ray intersects something: if (_f != NULL) { // Take the intersection point and the normal of the surface at that point. i_pos = r.m_origin + (t * r.m_direction); n = _f->normal_at_int(r, t); is_area_light = false; // Check if the object is an area light; for (vector::iterator it = s->m_lights.begin(); it != s->m_lights.end(); it++) { if ((*it)->light_type() == Light::AREA && static_cast(*it)->m_figure == _f) is_area_light = true; } // If the object is an area light, return it's emission value. if (is_area_light) { p_pos = Vec3(i_pos.x, i_pos.y, i_pos.z); photon = Photon(p_pos, _f->m_mat->m_emission.r, _f->m_mat->m_emission.g, _f->m_mat->m_emission.b); #pragma omp critical { m_photon_map.addPhoton(photon); } return _f->m_mat->m_emission; // Check if the material is not reflective/refractive. } else if (!_f->m_mat->m_refract) { // Calculate the direct lighting. for (size_t l = 0; l < s->m_lights.size(); l++) { // For every light source vis = true; if (s->m_lights[l]->light_type() == Light::INFINITESIMAL) { // Cast a shadow ray to determine visibility. sr = Ray(s->m_lights[l]->direction(i_pos), i_pos + (n * BIAS)); for (size_t f = 0; f < s->m_figures.size(); f++) { if (s->m_figures[f]->intersect(sr, _t) && _t < s->m_lights[l]->distance(i_pos)) { vis = false; break; } } // Evaluate the shading model accounting for visibility. dir_diff_color += vis ? s->m_lights[l]->diffuse(n, r, i_pos, *_f->m_mat) : vec3(0.0f); dir_spec_color += vis ? s->m_lights[l]->specular(n, r, i_pos, *_f->m_mat) : vec3(0.0f); } else if (s->m_lights[l]->light_type() == Light::AREA) { // Cast a shadow ray towards a sample point on the surface of the light source. al = static_cast(s->m_lights[l]); al->sample_at_surface(); sr = Ray(al->direction(i_pos), i_pos + (n * BIAS)); for (size_t f = 0; f < s->m_figures.size(); f++) { // Avoid self-intersection with the light source. if (al->m_figure != s->m_figures[f]) { if (s->m_figures[f]->intersect(sr, _t) && _t < al->distance(i_pos)) { vis = false; break; } } } // Evaluate the shading model accounting for visibility. dir_diff_color += vis ? s->m_lights[l]->diffuse(n, r, i_pos, *_f->m_mat) : vec3(0.0f); dir_spec_color += vis ? s->m_lights[l]->specular(n, r, i_pos, *_f->m_mat) : vec3(0.0f); } } // Calculate indirect lighting contribution. if (rec_level < m_max_depth) { r1 = random01(); r2 = random01(); sample = sample_hemisphere(r1, r2); rotate_sample(sample, n); rr = Ray(normalize(sample), i_pos + (sample * BIAS)); ind_color += r1 * trace_ray(rr, s, rec_level + 1) / PDF; } // Calculate environment light contribution vis = true; r1 = random01(); r2 = random01(); sample = sample_hemisphere(r1, r2); rotate_sample(sample, n); rr = Ray(normalize(sample), i_pos + (sample * BIAS)); // Cast a shadow ray to determine visibility. for (size_t f = 0; f < s->m_figures.size(); f++) { if (s->m_figures[f]->intersect(rr, _t)) { vis = false; break; } } amb_color = vis ? s->m_env->get_color(rr) * max(dot(n, rr.m_direction), 0.0f) / PDF : vec3(0.0f); // Add lighting. color += ((dir_diff_color + ind_color + amb_color) * (_f->m_mat->m_diffuse / pi())) + (_f->m_mat->m_specular * dir_spec_color); if (specular) { // Determine the specular reflection color. if (_f->m_mat->m_rho > 0.0f && rec_level < m_max_depth) { rr = Ray(normalize(reflect(r.m_direction, n)), i_pos + n * BIAS); color += _f->m_mat->m_rho * trace_ray(rr, s, rec_level + 1); } else if (_f->m_mat->m_rho > 0.0f && rec_level >= m_max_depth) return vec3(0.0f); } } else { // If the material has transmission enabled, calculate the Fresnel term. kr = fresnel(r.m_direction, n, r.m_ref_index, _f->m_mat->m_ref_index); // Determine the specular reflection color. if (kr > 0.0f && rec_level < m_max_depth) { rr = Ray(normalize(reflect(r.m_direction, n)), i_pos + n * BIAS); color += kr * trace_ray(rr, s, rec_level + 1); } else if (rec_level >= m_max_depth) return vec3(0.0f); // Determine the transmission color. if (_f->m_mat->m_refract && kr < 1.0f && rec_level < m_max_depth) { rr = Ray(normalize(refract(r.m_direction, n, r.m_ref_index / _f->m_mat->m_ref_index)), i_pos - n * BIAS, _f->m_mat->m_ref_index); color += (1.0f - kr) * trace_ray(rr, s, rec_level + 1); } else if (rec_level >= m_max_depth) return vec3(0.0f); } color += _f->m_mat->m_emission; p_pos = Vec3(i_pos.x, i_pos.y, i_pos.z); photon = Photon(p_pos, color.r, color.g, color.b); #pragma omp critical { m_photon_map.addPhoton(photon); } // Return final color. return color; } else return s->m_env->get_color(r); }