#include #include #include "path_tracer.hpp" #include "sampling.hpp" using std::numeric_limits; using namespace glm; PathTracer::~PathTracer() { } vec3 PathTracer::trace_ray(Ray & r, vector
& v_figures, vector & v_lights, Environment * e, unsigned int rec_level) const { float t, _t; Figure * _f; vec3 n, color, i_pos, ref, sample, dir_diff_color, dir_spec_color, ind_color, amb_color; Ray mv_r, sr, rr; bool vis; float kr, r1, r2; t = numeric_limits::max(); _f = NULL; // Find the closest intersecting surface. for (size_t f = 0; f < v_figures.size(); f++) { if (v_figures[f]->intersect(r, _t) && _t < t) { t = _t; _f = v_figures[f]; } } // If this ray intersects something: if (_f != NULL) { // Take the intersection point and the normal of the surface at that point. i_pos = r.m_origin + (t * r.m_direction); n = _f->normal_at_int(r, t); // Check if the material is not reflective/refractive. if (!_f->m_mat->m_refract) { // Calculate the direct lighting. for (size_t l = 0; l < v_lights.size(); l++) { // For every light source vis = true; // Cast a shadow ray to determine visibility. sr = Ray(v_lights[l]->direction(i_pos), i_pos + n * BIAS); for (size_t f = 0; f < v_figures.size(); f++) { if (v_figures[f]->intersect(sr, _t) && _t < v_lights[l]->distance(i_pos)) { vis = false; break; } } // Evaluate the shading model accounting for visibility. dir_diff_color += vis ? v_lights[l]->diffuse(n, r, i_pos, *_f->m_mat) : vec3(0.0f); dir_spec_color += vis ? v_lights[l]->specular(n, r, i_pos, *_f->m_mat) : vec3(0.0f); } // Calculate indirect lighting contribution. if (rec_level < m_max_depth) { r1 = random01(); r2 = random01(); sample = sample_hemisphere(r1, r2); rotate_sample(sample, n); rr = Ray(normalize(sample), i_pos + (sample * BIAS)); ind_color += r1 * trace_ray(rr, v_figures, v_lights, e, rec_level + 1) / PDF; } // Calculate environment light contribution vis = true; r1 = random01(); r2 = random01(); sample = sample_hemisphere(r1, r2); rotate_sample(sample, n); rr = Ray(normalize(sample), i_pos + (sample * BIAS)); // Cast a shadow ray to determine visibility. for (size_t f = 0; f < v_figures.size(); f++) { if (v_figures[f]->intersect(rr, _t)) { vis = false; break; } } amb_color = vis ? e->get_color(rr) * max(dot(n, rr.m_direction), 0.0f) / PDF : vec3(0.0f); // Add lighting. color += ((dir_diff_color + ind_color + amb_color) * (_f->m_mat->m_diffuse / pi())) + (_f->m_mat->m_specular * dir_spec_color); // Determine the specular reflection color. if (_f->m_mat->m_rho > 0.0f && rec_level < m_max_depth) { rr = Ray(normalize(reflect(r.m_direction, n)), i_pos + n * BIAS); color += _f->m_mat->m_rho * trace_ray(rr, v_figures, v_lights, e, rec_level + 1); } else if (_f->m_mat->m_rho > 0.0f && rec_level >= m_max_depth) return vec3(0.0f); } else { // If the material has transmission enabled, calculate the Fresnel term. kr = fresnel(r.m_direction, n, r.m_ref_index, _f->m_mat->m_ref_index); // Determine the specular reflection color. if (kr > 0.0f && rec_level < m_max_depth) { rr = Ray(normalize(reflect(r.m_direction, n)), i_pos + n * BIAS); color += kr * trace_ray(rr, v_figures, v_lights, e, rec_level + 1); } else if (rec_level >= m_max_depth) return vec3(0.0f); // Determine the transmission color. if (_f->m_mat->m_refract && kr < 1.0f && rec_level < m_max_depth) { rr = Ray(normalize(refract(r.m_direction, n, r.m_ref_index / _f->m_mat->m_ref_index)), i_pos - n * BIAS, _f->m_mat->m_ref_index); color += (1.0f - kr) * trace_ray(rr, v_figures, v_lights, e, rec_level + 1); } else if (rec_level >= m_max_depth) return vec3(0.0f); } // Return final color. return _f->m_mat->m_emission + color; } else { if (e != NULL) return e->get_color(r); else return vec3(0.0f); } }