#include #include #include #include #include "tracer.hpp" #define MAX_RECURSION 3 #define BIAS 0.000001f using namespace std; using std::numeric_limits; using namespace glm; static const vec3 BCKG_COLOR = vec3(0.0f); static inline float random01() { return static_cast(rand()) / static_cast(RAND_MAX); } static float fresnel(const vec3 & i, const vec3 & n, const float ir1, const float ir2) { float cos_t1 = dot(i, n); float cos_t2 = dot(normalize(refract(i, n, ir1 / ir2)), n); float sin_t2 = (ir1 / ir2) * sqrt(1.0f - (cos_t2 * cos_t2)); if (sin_t2 >= 1.0f) return 1.0f; float fr_par = ((ir2 * cos_t1) - (ir1 * cos_t2)) / ((ir2 * cos_t1) + (ir1 * cos_t2)); float fr_per = ((ir1 * cos_t2) - (ir2 * cos_t1)) / ((ir1 * cos_t2) + (ir2 * cos_t1)); return ((fr_par * fr_par) + (fr_per * fr_per)) / 2.0f; } vec2 Tracer::sample_pixel(int i, int j) const { float pxNDC; float pyNDC; float pxS; float pyS; pyNDC = (static_cast(i) + random01()) / m_h; pyS = (1.0f - (2.0f * pyNDC)) * tan(radians(m_fov / 2)); pxNDC = (static_cast(j) + random01()) / m_w; pxS = (2.0f * pxNDC) - 1.0f; pxS *= m_a_ratio * tan(radians(m_fov / 2)); return vec2(pxS, pyS); } vec3 Tracer::trace_ray(Ray & r, vector
& v_figures, vector & v_lights, unsigned int rec_level) const { float t, _t; Figure * _f; vec3 n, color, i_pos, ref, sample, dir_diff_color, dir_spec_color, ind_color; Ray mv_r, sr, rr; bool vis; float kr, r1, r2; t = numeric_limits::max(); _f = NULL; // Find the closest intersecting surface. for (size_t f = 0; f < v_figures.size(); f++) { if (v_figures[f]->intersect(r, _t) && _t < t) { t = _t; _f = v_figures[f]; } } // If this ray intersects something: if (_f != NULL) { // Take the intersection point and the normal of the surface at that point. i_pos = r.m_origin + (t * r.m_direction); n = _f->normal_at_int(r, t); // Check if the material is not reflective/refractive. if( !_f->m_mat.m_refract && _f->m_mat.m_rho == 0.0f) { // Calculate the direct lighting. for (size_t l = 0; l < v_lights.size(); l++) { // For every light source vis = true; // Cast a shadow ray to determine visibility. sr = Ray(v_lights[l]->direction(i_pos), i_pos + n * BIAS); for (size_t f = 0; f < v_figures.size(); f++) { if (v_figures[f]->intersect(sr, _t) && _t < v_lights[l]->distance(i_pos)) { vis = false; break; } } // Evaluate the shading model accounting for visibility. dir_diff_color += (vis ? 1.0f : 0.0f) * v_lights[l]->diffuse(n, r, t, _f->m_mat); dir_spec_color += (vis ? 1.0f : 0.0f) * v_lights[l]->specular(n, r, t, _f->m_mat); } // If enabled, calculate indirect lighting contribution. if (indirect_l && rec_level < MAX_RECURSION) { r1 = random01(); r2 = random01(); sample = sample_hemisphere(r1, r2); rotate_sample(sample, n); rr = Ray(normalize(sample), i_pos + (sample * BIAS)); ind_color += r1 * trace_ray(rr, v_figures, v_lights, rec_level + 1) / (1.0f / (2.0f * pi())); } color += ((dir_diff_color + ind_color) * (_f->m_mat.m_diffuse / pi())) + dir_spec_color; } else { // If the material has reflection/transmission enabled. // Calculate the Fresnel term if the surface is refracting. if (_f->m_mat.m_refract) kr = fresnel(r.m_direction, n, r.m_ref_index, _f->m_mat.m_ref_index); else kr = _f->m_mat.m_rho; // Determinte the specular reflection color. if (kr > 0.0f && rec_level < MAX_RECURSION) { rr = Ray(normalize(reflect(r.m_direction, n)), i_pos + n * BIAS); color += _f->m_mat.m_rho * kr * trace_ray(rr, v_figures, v_lights, rec_level + 1); } else if (rec_level >= MAX_RECURSION) return vec3(0.0f); // Determine the transmission color. if (_f->m_mat.m_refract && kr < 1.0f && rec_level < MAX_RECURSION) { rr = Ray(normalize(refract(r.m_direction, n, r.m_ref_index / _f->m_mat.m_ref_index)), i_pos - n * BIAS, _f->m_mat.m_ref_index); color += (1.0f - _f->m_mat.m_rho) * (1.0f - kr) * trace_ray(rr, v_figures, v_lights, rec_level + 1); } else if (rec_level >= MAX_RECURSION) return vec3(0.0f); } // Return final color. return clamp(color, 0.0f, 1.0f); } else return vec3(BCKG_COLOR); } /* Helper functions pretty much taken from scratchapixel.com */ void Tracer::create_coords_system(const vec3 &n, vec3 &nt, vec3 &nb) const { if (abs(n.x) > abs(n.y)) nt = normalize(vec3(n.z, 0.0f, -n.x)); else nt = normalize(vec3(0.0f, -n.z, n.y)); nb = normalize(cross(n, nt)); } vec3 Tracer::sample_hemisphere(const float r1, const float r2) const { float sin_t = sqrt(1.0f - (r1 * r1)); float phi = 2 * pi() * r2; float x = sin_t * cos(phi); float z = sin_t * sin(phi); return vec3(x, r1, z); } void Tracer::rotate_sample(vec3 & sample, const vec3 & n) const { vec3 nt, nb; mat3 rot_m; create_coords_system(n, nt, nb); sample = vec3(sample.x * nb.x + sample.y * n.x + sample.z * nt.x, sample.x * nb.y + sample.y * n.y + sample.z * nt.y, sample.x * nb.z + sample.y * n.z + sample.z * nt.z); }