#include #include #include #include #include #include #include #include #include #include #include #include #include "sampling.hpp" #include "scene.hpp" #include "ray.hpp" #include "tracer.hpp" #include "path_tracer.hpp" #include "whitted_tracer.hpp" #include "photon_tracer.hpp" using namespace std; using namespace glm; //////////////////////////////////////////// // Defines. //////////////////////////////////////////// #define ANSI_BOLD_YELLOW "\x1b[1;33m" #define ANSI_RESET_STYLE "\x1b[m" #define MAX_W 1920 #define MAX_H 1080 //////////////////////////////////////////// // Function prototypes. //////////////////////////////////////////// static void print_usage(char ** const argv); static void parse_args(int argc, char ** const argv); //////////////////////////////////////////// // Constants. //////////////////////////////////////////// static const char * OUT_FILE = "output.png"; //////////////////////////////////////////// // Global variables. //////////////////////////////////////////// typedef enum TRACERS { NONE, WHITTED, MONTE_CARLO, JENSEN } tracer_t; static char * g_input_file = NULL; static char * g_photons_file = NULL; static char * g_caustics_file = NULL; static char * g_out_file_name = NULL; static int g_samples = 25; static float g_fov = 45.0f; static int g_w = 640; static int g_h = 480; static float g_a_ratio = 640.0f / 480.0f; static vec3 image[MAX_H][MAX_W]; static tracer_t g_tracer = NONE; static unsigned int g_max_depth = 5; static float g_gamma = 2.2f; static float g_exposure = 0.0f; static size_t g_photons = 15000; static float g_p_sample_radius = 0.01f; static float g_cone_filter_k = 1.0f; //////////////////////////////////////////// // Main function. //////////////////////////////////////////// int main(int argc, char ** argv) { Ray r; vec2 sample; Tracer * tracer; PhotonTracer * p_tracer; uint64_t total; uint64_t current = 0; FIBITMAP * input_bitmap; FIBITMAP * output_bitmap; FREE_IMAGE_FORMAT fif; BYTE * bits; FIRGBF *pixel; int pitch; Scene * scn; parse_args(argc, argv); // Initialize everything. FreeImage_Initialise(); try { scn = new Scene(g_input_file); } catch (SceneError & e) { cout << e.what() << endl; return EXIT_FAILURE; } cout << "Rendering the input file: " << ANSI_BOLD_YELLOW << g_input_file << ANSI_RESET_STYLE << endl; cout << "The scene contains: " << endl; cout << " " << ANSI_BOLD_YELLOW << scn->m_figures.size() << ANSI_RESET_STYLE << (scn->m_figures.size() != 1 ? " figures." : " figure.") << endl; cout << " " << ANSI_BOLD_YELLOW << scn->m_lights.size() << ANSI_RESET_STYLE << " light " << (scn->m_lights.size() != 1 ? "sources." : "source.") << endl; cout << "Output image resolution is " << ANSI_BOLD_YELLOW << g_w << "x" << g_h << ANSI_RESET_STYLE << " pixels." << endl; cout << "Using " << ANSI_BOLD_YELLOW << g_samples << ANSI_RESET_STYLE << " samples per pixel." << endl; cout << "Maximum ray tree depth is " << ANSI_BOLD_YELLOW << g_max_depth << ANSI_RESET_STYLE << "." << endl; // Create the tracer object. if (g_tracer == WHITTED) { cout << "Using " << ANSI_BOLD_YELLOW << "Whitted" << ANSI_RESET_STYLE << " ray tracing." << endl; tracer = static_cast(new WhittedTracer(g_max_depth)); } else if(g_tracer == MONTE_CARLO) { cout << "Using " << ANSI_BOLD_YELLOW << "Monte Carlo" << ANSI_RESET_STYLE << " path tracing." << endl; tracer = static_cast(new PathTracer(g_max_depth)); } else if(g_tracer == JENSEN) { cout << "Using " << ANSI_BOLD_YELLOW << "Jensen's photon mapping" << ANSI_RESET_STYLE << " with ray tracing." << endl; p_tracer = new PhotonTracer(g_max_depth, g_p_sample_radius, g_cone_filter_k); if (g_photons_file == NULL && g_caustics_file == NULL) { cout << "Building global photon map with " << ANSI_BOLD_YELLOW << g_photons / 2 << ANSI_RESET_STYLE << " primary photons per light source." << endl; p_tracer->photon_tracing(scn, g_photons / 2); cout << "Building caustics photon map with " << ANSI_BOLD_YELLOW << g_photons / 2 << ANSI_RESET_STYLE << " primary photons per light source." << endl; p_tracer->photon_tracing(scn, g_photons / 2, true); p_tracer->build_photon_map(); } else { if (g_photons_file != g_caustics_file) { cerr << "Must specify both a photon map file and a caustics file." << endl; return EXIT_FAILURE; } p_tracer->build_photon_map(g_photons_file); p_tracer->build_photon_map(g_caustics_file, true); } tracer = static_cast(p_tracer); } else { cerr << "Must specify a ray tracer with \"-t\"." << endl; print_usage(argv); return EXIT_FAILURE; } // Generate the image. total = static_cast(g_h) * static_cast(g_w) * static_cast(g_samples); cout << "Tracing a total of " << ANSI_BOLD_YELLOW << total << ANSI_RESET_STYLE << " primary rays:" << endl; #pragma omp parallel for schedule(dynamic, 1) private(r, sample) shared(current) for (int i = 0; i < g_h; i++) { for (int j = 0; j < g_w; j++) { for (int k = 0; k < g_samples; k++) { sample = sample_pixel(i, j, g_w, g_h, g_a_ratio, g_fov); r = Ray(normalize(vec3(sample, -0.5f) - vec3(0.0f)), vec3(0.0f)); scn->m_cam->view_to_world(r); image[i][j] += tracer->trace_ray(r, scn, 0); #pragma omp atomic current++; } image[i][j] /= g_samples; } #pragma omp critical cout << "\r" << ANSI_BOLD_YELLOW << current << ANSI_RESET_STYLE << " of " << ANSI_BOLD_YELLOW << total << ANSI_RESET_STYLE << " primary rays traced."; } cout << endl; // Copy the pixels to the output bitmap. if (g_tracer == MONTE_CARLO || g_tracer == JENSEN) { cout << "Saving output image." << endl; input_bitmap = FreeImage_AllocateT(FIT_RGBF, g_w, g_h, 96); pitch = FreeImage_GetPitch(input_bitmap); bits = (BYTE *)FreeImage_GetBits(input_bitmap); for (unsigned int y = 0; y < FreeImage_GetHeight(input_bitmap); y++) { pixel = (FIRGBF *)bits; for (unsigned int x = 0; x < FreeImage_GetWidth(input_bitmap); x++) { pixel[x].red = image[g_h - 1 - y][x].r; pixel[x].green = image[g_h - 1 - y][x].g; pixel[x].blue = image[g_h - 1 - y][x].b; } bits += pitch; } output_bitmap = FreeImage_ToneMapping(input_bitmap, FITMO_DRAGO03, g_gamma, g_exposure); // Save the output image. fif = FreeImage_GetFIFFromFilename(g_out_file_name != NULL ? g_out_file_name : OUT_FILE); FreeImage_Save(fif, output_bitmap, g_out_file_name != NULL ? g_out_file_name : OUT_FILE); FreeImage_Unload(input_bitmap); FreeImage_Unload(output_bitmap); } else { input_bitmap = FreeImage_Allocate(g_w, g_h, 24, FI_RGBA_RED_MASK, FI_RGBA_GREEN_MASK, FI_RGBA_BLUE_MASK); pitch = FreeImage_GetLine(input_bitmap) / FreeImage_GetWidth(input_bitmap); bits = (BYTE *)FreeImage_GetBits(input_bitmap); for (unsigned int y = 0; y < FreeImage_GetHeight(input_bitmap); y++) { bits = FreeImage_GetScanLine(input_bitmap, y); for (unsigned int x = 0; x < FreeImage_GetWidth(input_bitmap); x++) { bits[FI_RGBA_RED] = static_cast(image[g_h - 1 - y][x].r * 255.0f); bits[FI_RGBA_GREEN] = static_cast(image[g_h - 1 - y][x].g * 255.0f); bits[FI_RGBA_BLUE] = static_cast(image[g_h - 1 - y][x].b * 255.0f); bits += pitch; } } FreeImage_AdjustGamma(input_bitmap, g_gamma); // Save the output image. fif = FreeImage_GetFIFFromFilename(g_out_file_name != NULL ? g_out_file_name : OUT_FILE); FreeImage_Save(fif, input_bitmap, g_out_file_name != NULL ? g_out_file_name : OUT_FILE); FreeImage_Unload(input_bitmap); } // Clean up. if (g_out_file_name != NULL) free(g_out_file_name); delete scn; delete tracer; FreeImage_DeInitialise(); return EXIT_SUCCESS; } //////////////////////////////////////////// // Helper functions. //////////////////////////////////////////// void print_usage(char ** const argv) { cerr << "USAGE: " << argv[0] << " [OPTIONS]... FILE" << endl; cerr << "Renders the scene specified by the scene file FILE." << endl << endl; cerr << "Mandatory options: " << endl; cerr << " -t\tRay tracing method to use. Valid values: " << endl; cerr << " \t" << ANSI_BOLD_YELLOW << "whitted" << ANSI_RESET_STYLE << " Classic Whitted ray tracing." << endl; cerr << " \t" << ANSI_BOLD_YELLOW << "monte_carlo" << ANSI_RESET_STYLE << " Monte Carlo path tracing." << endl; cerr << " \t" << ANSI_BOLD_YELLOW << "jensen" << ANSI_RESET_STYLE << " Photon mapping. " << endl << endl; cerr << "Extra options:" << endl; cerr << " -o\tOutput image file name with extension." << endl; cerr << " \tDefaults to \"output.png\"." << endl; cerr << " -f\tField of view to use in degrees." << endl; cerr << " \tDefaults to 45.0 degrees." << endl; cerr << " -s\tNumber of samples per pixel." << endl; cerr << " \tDefaults to 25 samples." << endl; cerr << " -w\tImage size in pixels as \"WIDTHxHEIGHT\"." << endl; cerr << " \tDefaults to 640x480 pixels." << endl; cerr << " \tMinimum resolution is 1x1 pixels." << endl; cerr << " \tMaxmimum resolution is " << MAX_W << "x" << MAX_H << " pixels." << endl; cerr << " -r\tMaxmimum recursion depth." << endl; cerr << " \tDefaults to 5." << endl; cerr << " -g\tGamma correction value (>= 0)." << endl; cerr << " \tDefaults to 2.2" << endl; cerr << " -e\tExposure scale factor (in [-8, 8])." << endl; cerr << " \tDefaults to 0.0 (no correction)." << endl; cerr << " -p\tNumber of primary photons per light source." << endl; cerr << " \tDefaults to 15000." << endl; cerr << " -h\tHemisphere radius for photon map sampling (> 0)." << endl; cerr << " \tDefaults to 0.01f." << endl; cerr << " -k\tFile with photon definitions." << endl; cerr << " \tSkips the photon tracing step using" << endl; cerr << " \tthe photons defined in the specified file." << endl; cerr << " -l\tCone filter constant." << endl; cerr << " \tDefaults to 1.0f." << endl; } void parse_args(int argc, char ** const argv) { int opt; int x_pos; int photons; // Check command line arguments. if(argc == 1) { print_usage(argv); exit(EXIT_FAILURE); } while((opt = getopt(argc, argv, "-:t:s:w:f:o:r:g:e:p:h:k:c:l:")) != -1) { switch (opt) { case 1: g_input_file = (char *)malloc((strlen(optarg) + 1) * sizeof(char)); strcpy(g_input_file, optarg); break; case 'g': g_gamma = atof(optarg); g_gamma = g_gamma < 0.0f ? 0.0f : g_gamma; break; case 'e': g_exposure = atof(optarg); g_exposure = clamp(g_exposure, -8.0f, 8.0f); break; case 't': if (strcmp("whitted", optarg) == 0 ) g_tracer = WHITTED; else if(strcmp("monte_carlo", optarg) == 0 || strcmp("montecarlo", optarg) == 0) g_tracer = MONTE_CARLO; else if(strcmp("jensen", optarg) == 0) g_tracer = JENSEN; else { cerr << "Invalid ray tracer: " << optarg << endl; print_usage(argv); exit(EXIT_FAILURE); } break; case 'w': for (x_pos = 0; optarg[x_pos]; x_pos++) if (optarg[x_pos] == 'x') break; if (optarg[x_pos] == '\0') { cerr << "Invalid screen resolution: " << optarg << endl; print_usage(argv); exit(EXIT_FAILURE); } else { optarg[x_pos] = '\0'; g_w = atoi(optarg); g_h = atoi(&optarg[x_pos + 1]); if (g_w <= 0 || g_h <= 0 || g_w >= MAX_W || g_h >= MAX_H) { cerr << "Invalid screen resolution: " << optarg << endl; print_usage(argv); exit(EXIT_FAILURE); } g_a_ratio = static_cast(g_w) / static_cast(g_h); } break; case 's': g_samples = atoi(optarg); if (g_samples <= 0) { cerr << "Samples per pixel must be a positive integer." << endl; print_usage(argv); exit(EXIT_FAILURE); } break; case 'o': g_out_file_name = (char*)malloc((strlen(optarg) + 1) * sizeof(char)); strcpy(g_out_file_name, optarg); break; case 'f': g_fov = atof(optarg); if (g_fov < 1.0f) { cerr << "FoV must be greater than or equal to 1.0 degrees." << endl; print_usage(argv); exit(EXIT_FAILURE); } break; case 'r': g_max_depth = static_cast(abs(atoi(optarg))); if (g_max_depth == 0) { cerr << "Recursion depth must be a positive integer." << endl; print_usage(argv); exit(EXIT_FAILURE); } break; case 'p': photons = atoi(optarg); if (photons <= 0) { cerr << "The number of photons must be a positive integer." << endl; print_usage(argv); exit(EXIT_FAILURE); } g_photons = (size_t)photons; break; case 'h': g_p_sample_radius = atof(optarg); if (g_p_sample_radius <= 0.0f) { cerr << "Photon map sampling radius must be greater than 0.0" << endl; print_usage(argv); exit(EXIT_FAILURE); } break; case 'k': g_photons_file = (char *)malloc((strlen(optarg) + 1) * sizeof(char)); strcpy(g_photons_file, optarg); break; case 'c': g_caustics_file = (char *)malloc((strlen(optarg) + 1) * sizeof(char)); strcpy(g_caustics_file, optarg); break; case 'l': g_cone_filter_k = atof(optarg); if (g_cone_filter_k <= 0.0f) { cerr << "Cone filter constant must be greater than or equal to 1.0" << endl; print_usage(argv); exit(EXIT_FAILURE); } break; case ':': cerr << "Option \"-" << static_cast(optopt) << "\" requires an argument." << endl; print_usage(argv); exit(EXIT_FAILURE); break; case '?': default: cerr << "Unrecognized option: \"-" << static_cast(optopt) << "\"." << endl; } } if (g_input_file == NULL) { cerr << "Must specify an input file." << endl; print_usage(argv); exit(EXIT_FAILURE); } }