#include #include #include #include "tracer.hpp" #define MAX_RECURSION 9 #define BIAS 0.000001f using namespace std; using std::numeric_limits; using glm::normalize; using glm::radians; using glm::dot; using glm::reflect; using glm::clamp; using glm::tan; static const vec3 BCKG_COLOR = vec3(0.16f, 0.66f, 0.72f); static inline float random01() { return static_cast(rand()) / static_cast(RAND_MAX); } vec2 Tracer::sample_pixel(int i, int j) const { float pxNDC; float pyNDC; float pxS; float pyS; pyNDC = (static_cast(i) + random01()) / m_h; pyS = (1.0f - (2.0f * pyNDC)) * tan(radians(m_fov) / 2); pxNDC = (static_cast(j) + random01()) / m_w; pxS = (2.0f * pxNDC) - 1.0f; pxS *= m_a_ratio * tan(radians(m_fov) / 2); return vec2(pxS, pyS); } vec3 Tracer::trace_ray(Ray & r, vector
& v_figures, vector & v_lights, unsigned int rec_level) const { float t, _t; Figure * _f; vec3 n, color, i_pos, ref; Ray sr, rr; bool vis; t = numeric_limits::max(); _f = NULL; for (size_t f = 0; f < v_figures.size(); f++) { if (v_figures[f]->intersect(r, _t) && _t < t) { t = _t; _f = v_figures[f]; } } if (_f != NULL) { i_pos = r.m_origin + (t * r.m_direction); n = _f->normal_at_int(r, t); for (size_t l = 0; l < v_lights.size(); l++) { vis = true; sr = Ray(v_lights[l]->m_position, i_pos + n * BIAS); for (size_t f = 0; f < v_figures.size(); f++) { if (v_figures[f]->intersect(sr, _t)) { vis = false; break; } } color += (vis ? 1.0f : 0.0f) * v_lights[l]->shade(n, r, _f->m_mat); } if (_f->m_mat.m_rho > 0.0f && rec_level < MAX_RECURSION) { rr = Ray(reflect(r.m_direction, n), i_pos + n * BIAS); color += _f->m_mat.m_rho * trace_ray(rr, v_figures, v_lights, rec_level + 1); } else if (rec_level >= MAX_RECURSION) return vec3(BCKG_COLOR); return clamp(color, 0.0f, 1.0f); } else return vec3(BCKG_COLOR); }