#include "sphere.hpp" using glm::normalize; using glm::sqrt; bool Sphere::intersect(Ray & r, float & t) const { float t1, t2; float d; float a = (r.m_direction.x * r.m_direction.x) + (r.m_direction.y * r.m_direction.y) + (r.m_direction.z * r.m_direction.z); float b = (2 * r.m_direction.x * (r.m_origin.x - m_center.x)) + (2 * r.m_direction.y * (r.m_origin.y - m_center.y)) + (2 * r.m_direction.z * (r.m_origin.z - m_center.z)); float c = (m_center.x * m_center.x) + (m_center.y * m_center.y) + (m_center.z * m_center.z) + (r.m_origin.x * r.m_origin.x) + (r.m_origin.y * r.m_origin.y) + (r.m_origin.z * r.m_origin.z) - 2 * ((m_center.x * r.m_origin.x) + (m_center.y * r.m_origin.y) + (m_center.z * r.m_origin.z)) - (m_radius * m_radius); d = (b * b) - (4 * a * c); if (d >= 0.0f) { t1 = (-b - sqrt(d)) / (2 * a); t2 = (-b + sqrt(d)) / (2 * a); t = t1 < t2 ? t1 : t2; return t >= 0.0f; } else return false; } vec3 Sphere::normal_at_int(Ray & r, float & t) const { vec3 i = vec3(r.m_origin + (t * r.m_direction)); return normalize(vec3((i - m_center) / m_radius)); }