Files
PhotonMF/photon_tracer.cpp

436 lines
15 KiB
C++

#include <iostream>
#include <fstream>
#include <iomanip>
#include <limits>
#include <vector>
#include <utility>
#include <cstdint>
#include <cstdlib>
#include <glm/gtc/constants.hpp>
#include "photon_tracer.hpp"
#include "sampling.hpp"
#include "area_light.hpp"
#include "directional_light.hpp"
#include "spot_light.hpp"
using std::cout;
using std::cerr;
using std::endl;
using std::ifstream;
using std::ios;
using std::setw;
using std::vector;
using std::pair;
using std::numeric_limits;
using namespace glm;
#define ANSI_BOLD_YELLOW "\x1b[1;33m"
#define ANSI_RESET_STYLE "\x1b[m"
PhotonTracer::~PhotonTracer() { }
vec3 PhotonTracer::trace_ray(Ray & r, Scene * s, unsigned int rec_level) const {
float t, _t, red, green, blue, kr, radius, r1, r2;
Figure * _f;
vec3 n, color, i_pos, ref, dir_spec_color, p_contrib, c_contrib, sample, amb_color;
Ray mv_r, sr, rr;
bool vis, is_area_light;
AreaLight * al;
Vec3 mn, mx;
vector<Photon> photons;
vector<Photon> caustics;
t = numeric_limits<float>::max();
_f = NULL;
// Find the closest intersecting surface.
for (size_t f = 0; f < s->m_figures.size(); f++) {
if (s->m_figures[f]->intersect(r, _t) && _t < t) {
t = _t;
_f = s->m_figures[f];
}
}
// If this ray intersects something:
if (_f != NULL) {
// Take the intersection point and the normal of the surface at that point.
i_pos = r.m_origin + (t * r.m_direction);
n = _f->normal_at_int(r, t);
is_area_light = false;
// Check if the object is an area light;
for (size_t l = 0; l < s->m_lights.size(); l++) {
if (s->m_lights[l]->light_type() == Light::AREA && static_cast<AreaLight *>(s->m_lights[l])->m_figure == _f)
is_area_light = true;
}
// If the object is an area light, return it's emission value.
if (is_area_light) {
return _f->m_mat->m_emission;
// Check if the material is not reflective/refractive.
} else if (!_f->m_mat->m_refract) {
// Calculate the direct lighting.
for (size_t l = 0; l < s->m_lights.size(); l++) {
// For every light source
vis = true;
if (s->m_lights[l]->light_type() == Light::INFINITESIMAL) {
// Cast a shadow ray to determine visibility.
sr = Ray(s->m_lights[l]->direction(i_pos), i_pos + n * BIAS);
for (size_t f = 0; f < s->m_figures.size(); f++) {
if (s->m_figures[f]->intersect(sr, _t) && _t < s->m_lights[l]->distance(i_pos)) {
vis = false;
break;
}
}
} else if (s->m_lights[l]->light_type() == Light::AREA) {
// Cast a shadow ray towards a sample point on the surface of the light source.
al = static_cast<AreaLight *>(s->m_lights[l]);
al->sample_at_surface();
sr = Ray(al->direction(i_pos), i_pos + (n * BIAS));
for (size_t f = 0; f < s->m_figures.size(); f++) {
// Avoid self-intersection with the light source.
if (al->m_figure != s->m_figures[f]) {
if (s->m_figures[f]->intersect(sr, _t) && _t < al->distance(i_pos)) {
vis = false;
break;
}
}
}
}
// Evaluate the shading model accounting for visibility.
dir_spec_color += vis ? s->m_lights[l]->specular(n, r, i_pos, *_f->m_mat) : vec3(0.0f);
}
// Calculate photon map contribution
radius = m_h_radius;
#ifdef ENABLE_KD_TREE
Vec3 vmin(i_pos.x - m_h_radius, i_pos.y - m_h_radius, i_pos.z - m_h_radius);
Vec3 vmax(i_pos.x + m_h_radius, i_pos.y + m_h_radius, i_pos.z + m_h_radius);
photons = m_photon_map.findInRange(vmin, vmax);
#else
m_photon_map.find_by_distance(photons, i_pos, n, m_h_radius, 1000);
#endif
while(photons.size() == 0 && radius < 5.0) {
radius *= 2;
m_photon_map.find_by_distance(photons, i_pos, n, m_h_radius, 1000);
}
radius = m_h_radius;
#ifdef ENABLE_KD_TREE
caustics = m_photon_map.findInRange(vmin, vmax);
#else
m_caustics_map.find_by_distance(caustics, i_pos, n, m_h_radius, 1000);
#endif
while(caustics.size() == 0 && radius < 5.0) {
radius *= 2;
m_caustics_map.find_by_distance(caustics, i_pos, n, m_h_radius, 1000);
}
//photons.insert(photons.end(), caustics.begin(), caustics.end());
for (Photon p : photons) {
p.getColor(red, green, blue);
p_contrib += vec3(red, green, blue);
}
p_contrib /= (1.0f - (2.0f / (3.0f * m_cone_filter_k))) * pi<float>() * (radius * radius);
for (Photon p : caustics) {
p.getColor(red, green, blue);
c_contrib += vec3(red, green, blue);
}
c_contrib /= (1.0f - (2.0f / (3.0f * m_cone_filter_k))) * pi<float>() * (radius * radius);
// Calculate environment light contribution
vis = true;
r1 = random01();
r2 = random01();
sample = sample_hemisphere(r1, r2);
rotate_sample(sample, n);
rr = Ray(normalize(sample), i_pos + (sample * BIAS));
// Cast a shadow ray to determine visibility.
for (size_t f = 0; f < s->m_figures.size(); f++) {
if (s->m_figures[f]->intersect(rr, _t)) {
vis = false;
break;
}
}
amb_color = vis ? s->m_env->get_color(rr) * max(dot(n, rr.m_direction), 0.0f) / PDF : vec3(0.0f);
color += (1.0f - _f->m_mat->m_rho) * (((p_contrib + c_contrib + amb_color) * (_f->m_mat->m_diffuse / pi<float>())) +
(_f->m_mat->m_specular * dir_spec_color));
// Determine the specular reflection color.
if (_f->m_mat->m_rho > 0.0f && rec_level < m_max_depth) {
rr = Ray(normalize(reflect(r.m_direction, n)), i_pos + n * BIAS);
color += _f->m_mat->m_rho * trace_ray(rr, s, rec_level + 1);
} else if (_f->m_mat->m_rho > 0.0f && rec_level >= m_max_depth)
return vec3(0.0f);
} else {
// If the material has transmission enabled, calculate the Fresnel term.
kr = fresnel(r.m_direction, n, r.m_ref_index, _f->m_mat->m_ref_index);
// Determine the specular reflection color.
if (kr > 0.0f && rec_level < m_max_depth) {
rr = Ray(normalize(reflect(r.m_direction, n)), i_pos + n * BIAS);
color += kr * trace_ray(rr, s, rec_level + 1);
} else if (rec_level >= m_max_depth)
return vec3(0.0f);
// Determine the transmission color.
if (_f->m_mat->m_refract && kr < 1.0f && rec_level < m_max_depth) {
rr = Ray(normalize(refract(r.m_direction, n, r.m_ref_index / _f->m_mat->m_ref_index)), i_pos - n * BIAS, _f->m_mat->m_ref_index);
color += (1.0f - kr) * trace_ray(rr, s, rec_level + 1);
} else if (rec_level >= m_max_depth)
return vec3(0.0f);
}
// Return final color.
return _f->m_mat->m_emission + color;
} else
return s->m_env->get_color(r);
}
void PhotonTracer::photon_tracing(Scene * s, const size_t n_photons_per_ligth, const bool specular) {
AreaLight * al = NULL;
PointLight * pl = NULL;
vec3 l_sample, s_normal, h_sample, power;
Vec3 ls, dir;
float r1, r2;
Photon ph;
uint64_t total = 0, current = 0;
vector<Figure *> spec_figures;
for (Light * light : s->m_lights) {
total += light->light_type() == Light::AREA ||
(light->light_type() == Light::INFINITESIMAL &&
(dynamic_cast<SpotLight *>(light) == NULL || dynamic_cast<DirectionalLight *>(light) == NULL)) ? 1 : 0;
}
total *= static_cast<uint64_t>(n_photons_per_ligth);
// Separate specular objects to build the caustics photon map.
if (specular) {
for (Figure * sf : s->m_figures)
if (sf->m_mat->m_refract || sf->m_mat->m_rho > 0.0f)
spec_figures.push_back(sf);
if (spec_figures.size() == 0) {
cout << ANSI_BOLD_YELLOW << "There are no specular objects in the scene." << ANSI_RESET_STYLE << endl;
cout << ANSI_BOLD_YELLOW << "Skipping caustics photon map." << ANSI_RESET_STYLE << endl;
return;
} else
cout << "There " << (spec_figures.size() == 1 ? "is " : "are ") << ANSI_BOLD_YELLOW << spec_figures.size() << ANSI_RESET_STYLE <<
" specular " << (spec_figures.size() == 1 ? "object" : "objects") << " in the scene." << endl;
}
cout << "Tracing a total of " << ANSI_BOLD_YELLOW << total << ANSI_RESET_STYLE << " primary photons:" << endl;
for (Light * l : s->m_lights) {
/* Only area lights and point lights supported right now. */
if (l->light_type() == Light::INFINITESIMAL && (dynamic_cast<SpotLight *>(l) != NULL || dynamic_cast<DirectionalLight *>(l) != NULL))
continue;
if (l->light_type() == Light::AREA)
al = static_cast<AreaLight *>(l);
else
pl = static_cast<PointLight *>(l);
assert(pl != NULL || al != NULL);
#pragma omp parallel for schedule(dynamic, 1) private(l_sample, s_normal, h_sample, r1, r2, power, ls, dir, ph) shared(al, pl, current)
for (size_t p = 0; p < n_photons_per_ligth; p++) {
if (al != NULL) {
#pragma omp critical
{
l_sample = al->sample_at_surface();
s_normal = al->normal_at_last_sample();
}
l_sample = l_sample + (BIAS * s_normal);
if (!specular || (specular && spec_figures.size() == 0)) {
// Generate photon from light source in random direction.
r1 = random01();
r2 = random01();
h_sample = normalize(sample_hemisphere(r1, r2));
rotate_sample(h_sample, s_normal);
} else {
// Generate photon from light source in the direction of specular reflective objects.
h_sample = normalize(spec_figures[p % spec_figures.size()]->sample_at_surface() - l_sample);
}
// Create the primary photon.
power = (al->m_figure->m_mat->m_emission / static_cast<float>(n_photons_per_ligth));
} else if (pl != NULL) {
l_sample = glm::vec3(pl->m_position.x, pl->m_position.y, pl->m_position.z);
if (!specular || (specular && spec_figures.size() == 0)) {
h_sample = normalize(sample_sphere(l_sample, 1.0f) - l_sample);
} else {
// Generate photon from light source in the direction of specular reflective objects.
h_sample = normalize(spec_figures[p % spec_figures.size()]->sample_at_surface() - l_sample);
}
power = (pl->m_diffuse / static_cast<float>(n_photons_per_ligth));
}
ls = Vec3(l_sample.x, l_sample.y, l_sample.z);
dir = Vec3(h_sample.x, h_sample.y, h_sample.z);
ph = Photon(ls, dir, power.r, power.g, power.b, 1.0f);
trace_photon(ph, s, 0);
#pragma omp atomic
current++;
}
cout << "\r" << setw(3) << static_cast<size_t>((static_cast<double>(current) / static_cast<double>(total)) * 100.0) << "% done.";
}
cout << endl;
cout << "Generated " << ANSI_BOLD_YELLOW << m_photon_map.getNumPhotons() << ANSI_RESET_STYLE << " total photons." << endl;
m_photon_map.save_photon_list(specular ? "caustics.txt" : "photons.txt");
}
void PhotonTracer::build_photon_map(const char * photons_file, const bool caustics) {
Photon ph;
float x, y, z, dx, dy, dz, r, g, b, rc;
ifstream ifs;
if (photons_file == NULL)
return;
ifs.open(photons_file);
if (!ifs.is_open()) {
cerr << "Failed to open the file " << photons_file << " for reading." << endl;
exit(EXIT_FAILURE);
}
cout << "Reading photon definitions from " << ANSI_BOLD_YELLOW << photons_file << ANSI_RESET_STYLE << "." << endl;
while (!ifs.eof()) {
ifs >> x >> y >> z >> dx >> dy >> dz >> r >> g >> b >> rc;
ph = Photon(Vec3(x, y, z), Vec3(dx, dy, dz), r, g, b, rc);
m_photon_map.addPhoton(ph);
}
cout << "Read " << ANSI_BOLD_YELLOW << m_photon_map.getNumPhotons() << ANSI_RESET_STYLE << " photons from the file." << endl;
ifs.close();
build_photon_map(caustics);
}
void PhotonTracer::build_photon_map(const bool caustics) {
cout << "Building photon map Kd-tree." << endl;
#ifdef ENABLE_KD_TREE
if (!caustics)
m_photon_map.buildKdTree();
else
m_caustics_map.buildKdTree();
#endif
}
void PhotonTracer::trace_photon(Photon & ph, Scene * s, const unsigned int rec_level) {
Photon photon;
float t, _t, red, green, blue;
Figure * _f;
vec3 n, color, i_pos, sample, ph_dir, ph_pos;
Vec3 p_pos, p_dir;
Ray r;
float kr, r1, r2;
t = numeric_limits<float>::max();
_f = NULL;
ph.getColor(red, green, blue);
// Find the closest intersecting surface.
r = Ray(ph.direction.x, ph.direction.y, ph.direction.z, ph.position.x, ph.position.y, ph.position.z);
for (size_t f = 0; f < s->m_figures.size(); f++) {
if (s->m_figures[f]->intersect(r, _t) && _t < t) {
t = _t;
_f = s->m_figures[f];
}
}
// If this ray intersects something:
if (_f != NULL) {
// Take the intersection point and the normal of the surface at that point.
i_pos = r.m_origin + (t * r.m_direction);
n = _f->normal_at_int(r, t);
// Store the diffuse photon and trace.
if (!_f->m_mat->m_refract){
#pragma omp critical
{
p_pos = Vec3(i_pos.x, i_pos.y, i_pos.z);
p_dir = Vec3(-ph.direction.x, -ph.direction.y, -ph.direction.z);
photon = Photon(p_pos, p_dir, red, green, blue, ph.ref_index);
m_photon_map.addPhoton(photon);
}
// Generate a photon for diffuse reflection.
r1 = random01();
r2 = random01();
sample = sample_hemisphere(r1, r2);
rotate_sample(sample, n);
normalize(sample);
color = (1.0f - _f->m_mat->m_rho) * (vec3(red, green, blue) * (_f->m_mat->m_diffuse / pi<float>()));
p_pos = Vec3(i_pos.x, i_pos.y, i_pos.z);
p_dir = Vec3(sample.x, sample.y, sample.z);
photon = Photon(p_pos, p_dir, color.r, color.g, color.b, ph.ref_index);
// Trace diffuse-reflected photon.
if (rec_level < m_max_depth)
trace_photon(photon, s, rec_level + 1);
// Trace specular reflected photon.
if (_f->m_mat->m_rho > 0.0f && rec_level < m_max_depth) {
color = (_f->m_mat->m_rho) * vec3(red, green, blue);
i_pos += n * BIAS;
p_pos = Vec3(i_pos.x, i_pos.y, i_pos.z);
ph_dir = normalize(reflect(vec3(ph.direction.x, ph.direction.y, ph.direction.z), n));
p_dir = Vec3(ph_dir.x, ph_dir.y, ph_dir.z);
photon = Photon(p_pos, p_dir, color.r, color.g, color.b, ph.ref_index);
trace_photon(photon, s, rec_level + 1);
}
} else if (_f->m_mat->m_refract && rec_level < m_max_depth) {
// If the material has transmission enabled, calculate the Fresnel term.
kr = fresnel(r.m_direction, n, ph.ref_index, _f->m_mat->m_ref_index);
// Trace the reflected photon.
if (kr > 0.0f) {
color = kr * vec3(red, green, blue);
i_pos += n * BIAS;
p_pos = Vec3(i_pos.x, i_pos.y, i_pos.z);
ph_dir = normalize(reflect(vec3(ph.direction.x, ph.direction.y, ph.direction.z), n));
p_dir = Vec3(ph_dir.x, ph_dir.y, ph_dir.z);
photon = Photon(p_pos, p_dir, color.r, color.g, color.b, ph.ref_index);
trace_photon(photon, s, rec_level + 1);
}
// Trace the transmitted photon.
if (kr < 1.0f) {
color = (1.0f - kr) * vec3(red, green, blue);
i_pos -= n * (2 * BIAS);
p_pos = Vec3(i_pos.x, i_pos.y, i_pos.z);
ph_dir = normalize(refract(vec3(ph.direction.x, ph.direction.y, ph.direction.z), n, ph.ref_index / _f->m_mat->m_ref_index));
p_dir = Vec3(ph_dir.x, ph_dir.y, ph_dir.z);
photon = Photon(p_pos, p_dir, color.r, color.g, color.b, _f->m_mat->m_ref_index);
trace_photon(photon, s, rec_level + 1);
}
}
}
}