Files
PhotonMF/photon_tracer.cpp

323 lines
10 KiB
C++

#include <limits>
#include <glm/gtc/constants.hpp>
#include "photon_tracer.hpp"
#include "sampling.hpp"
#include "area_light.hpp"
using std::numeric_limits;
using namespace glm;
PhotonTracer::~PhotonTracer() { }
vec3 PhotonTracer::trace_ray(Ray & r, Scene * s, unsigned int rec_level) const {
float t, _t;
Figure * _f;
vec3 n, color, i_pos, ref, dir_diff_color, dir_spec_color;
Ray mv_r, sr, rr;
bool vis, is_area_light;
float kr;
AreaLight * al;
t = numeric_limits<float>::max();
_f = NULL;
// Find the closest intersecting surface.
for (size_t f = 0; f < s->m_figures.size(); f++) {
if (s->m_figures[f]->intersect(r, _t) && _t < t) {
t = _t;
_f = s->m_figures[f];
}
}
// If this ray intersects something:
if (_f != NULL) {
// Take the intersection point and the normal of the surface at that point.
i_pos = r.m_origin + (t * r.m_direction);
n = _f->normal_at_int(r, t);
is_area_light = false;
// Check if the object is an area light;
for (size_t l = 0; l < s->m_lights.size(); l++) {
if (s->m_lights[l]->light_type() == Light::AREA && static_cast<AreaLight *>(s->m_lights[l])->m_figure == _f)
is_area_light = true;
}
// If the object is an area light, return it's emission value.
if (is_area_light) {
return _f->m_mat->m_emission;
// Check if the material is not reflective/refractive.
} else if (!_f->m_mat->m_refract) {
// Calculate the direct lighting.
for (size_t l = 0; l < s->m_lights.size(); l++) {
// For every light source
vis = true;
if (s->m_lights[l]->light_type() == Light::INFINITESIMAL) {
// Cast a shadow ray to determine visibility.
sr = Ray(s->m_lights[l]->direction(i_pos), i_pos + n * BIAS);
for (size_t f = 0; f < s->m_figures.size(); f++) {
if (s->m_figures[f]->intersect(sr, _t) && _t < s->m_lights[l]->distance(i_pos)) {
vis = false;
break;
}
}
} else if (s->m_lights[l]->light_type() == Light::AREA) {
// Cast a shadow ray towards a sample point on the surface of the light source.
al = static_cast<AreaLight *>(s->m_lights[l]);
al->sample_at_surface();
sr = Ray(al->direction(i_pos), i_pos + (n * BIAS));
for (size_t f = 0; f < s->m_figures.size(); f++) {
// Avoid self-intersection with the light source.
if (al->m_figure != s->m_figures[f]) {
if (s->m_figures[f]->intersect(sr, _t) && _t < al->distance(i_pos)) {
vis = false;
break;
}
}
}
}
// Evaluate the shading model accounting for visibility.
dir_diff_color += vis ? s->m_lights[l]->diffuse(n, r, i_pos, *_f->m_mat) : vec3(0.0f);
dir_spec_color += vis ? s->m_lights[l]->specular(n, r, i_pos, *_f->m_mat) : vec3(0.0f);
}
color += (dir_diff_color * (_f->m_mat->m_diffuse / pi<float>())) + (_f->m_mat->m_specular * dir_spec_color);
// Determine the specular reflection color.
if (_f->m_mat->m_rho > 0.0f && rec_level < m_max_depth) {
rr = Ray(normalize(reflect(r.m_direction, n)), i_pos + n * BIAS);
color += _f->m_mat->m_rho * trace_ray(rr, s, rec_level + 1);
} else if (_f->m_mat->m_rho > 0.0f && rec_level >= m_max_depth)
return vec3(0.0f);
} else {
// If the material has transmission enabled, calculate the Fresnel term.
kr = fresnel(r.m_direction, n, r.m_ref_index, _f->m_mat->m_ref_index);
// Determine the specular reflection color.
if (kr > 0.0f && rec_level < m_max_depth) {
rr = Ray(normalize(reflect(r.m_direction, n)), i_pos + n * BIAS);
color += kr * trace_ray(rr, s, rec_level + 1);
} else if (rec_level >= m_max_depth)
return vec3(0.0f);
// Determine the transmission color.
if (_f->m_mat->m_refract && kr < 1.0f && rec_level < m_max_depth) {
rr = Ray(normalize(refract(r.m_direction, n, r.m_ref_index / _f->m_mat->m_ref_index)), i_pos - n * BIAS, _f->m_mat->m_ref_index);
color += (1.0f - kr) * trace_ray(rr, s, rec_level + 1);
} else if (rec_level >= m_max_depth)
return vec3(0.0f);
}
// Return final color.
return _f->m_mat->m_emission + color;
} else
return s->m_env->get_color(r);
}
void PhotonTracer::build_photon_map(Scene * s, const size_t n_photons_per_ligth, const bool specular) {
Light * l;
AreaLight * al;
vec3 l_sample, s_normal, h_sample;
float r1, r2;
Ray rr;
for (vector<Light *>::iterator it = s->m_lights.begin(); it != s->m_lights.end(); it++) {
for (size_t p = 0; p < n_photons_per_ligth; p++) {
l = *it;
/* Only area lights supported right now. */
if (l->light_type() != Light::AREA)
continue;
al = static_cast<AreaLight *>(l);
if (!specular) {
l_sample = al->sample_at_surface();
s_normal = al->normal_at_last_sample();
r1 = random01();
r2 = random01();
h_sample = sample_hemisphere(r1, r2);
rotate_sample(h_sample, s_normal);
rr = Ray(normalize(h_sample), l_sample + (h_sample * BIAS));
} else {
// TODO: Generate photon from light source in direction of specular reflective objects.
}
trace_photon(rr, s, 0, specular);
}
}
}
vec3 PhotonTracer::trace_photon(Ray &r, Scene * s, const unsigned int rec_level, const bool specular) {
Photon photon;
float t, _t;
Figure * _f;
vec3 n, color, i_pos, ref, sample, dir_diff_color, dir_spec_color, ind_color, amb_color;
Vec3 p_pos;
Ray mv_r, sr, rr;
bool vis, is_area_light = false;
float kr, r1, r2;
AreaLight * al;
t = numeric_limits<float>::max();
_f = NULL;
// Find the closest intersecting surface.
for (size_t f = 0; f < s->m_figures.size(); f++) {
if (s->m_figures[f]->intersect(r, _t) && _t < t) {
t = _t;
_f = s->m_figures[f];
}
}
// If this ray intersects something:
if (_f != NULL) {
// Take the intersection point and the normal of the surface at that point.
i_pos = r.m_origin + (t * r.m_direction);
n = _f->normal_at_int(r, t);
is_area_light = false;
// Check if the object is an area light;
for (vector<Light *>::iterator it = s->m_lights.begin(); it != s->m_lights.end(); it++) {
if ((*it)->light_type() == Light::AREA && static_cast<AreaLight *>(*it)->m_figure == _f)
is_area_light = true;
}
// If the object is an area light, return it's emission value.
if (is_area_light) {
p_pos = Vec3(i_pos.x, i_pos.y, i_pos.z);
photon = Photon(p_pos, _f->m_mat->m_emission.r, _f->m_mat->m_emission.g, _f->m_mat->m_emission.b);
m_photon_map.addPhoton(photon);
return _f->m_mat->m_emission;
// Check if the material is not reflective/refractive.
} else if (!_f->m_mat->m_refract) {
// Calculate the direct lighting.
for (size_t l = 0; l < s->m_lights.size(); l++) {
// For every light source
vis = true;
if (s->m_lights[l]->light_type() == Light::INFINITESIMAL) {
// Cast a shadow ray to determine visibility.
sr = Ray(s->m_lights[l]->direction(i_pos), i_pos + (n * BIAS));
for (size_t f = 0; f < s->m_figures.size(); f++) {
if (s->m_figures[f]->intersect(sr, _t) && _t < s->m_lights[l]->distance(i_pos)) {
vis = false;
break;
}
}
// Evaluate the shading model accounting for visibility.
dir_diff_color += vis ? s->m_lights[l]->diffuse(n, r, i_pos, *_f->m_mat) : vec3(0.0f);
dir_spec_color += vis ? s->m_lights[l]->specular(n, r, i_pos, *_f->m_mat) : vec3(0.0f);
} else if (s->m_lights[l]->light_type() == Light::AREA) {
// Cast a shadow ray towards a sample point on the surface of the light source.
al = static_cast<AreaLight *>(s->m_lights[l]);
al->sample_at_surface();
sr = Ray(al->direction(i_pos), i_pos + (n * BIAS));
for (size_t f = 0; f < s->m_figures.size(); f++) {
// Avoid self-intersection with the light source.
if (al->m_figure != s->m_figures[f]) {
if (s->m_figures[f]->intersect(sr, _t) && _t < al->distance(i_pos)) {
vis = false;
break;
}
}
}
// Evaluate the shading model accounting for visibility.
dir_diff_color += vis ? s->m_lights[l]->diffuse(n, r, i_pos, *_f->m_mat) : vec3(0.0f);
dir_spec_color += vis ? s->m_lights[l]->specular(n, r, i_pos, *_f->m_mat) : vec3(0.0f);
}
}
// Calculate indirect lighting contribution.
if (rec_level < m_max_depth) {
r1 = random01();
r2 = random01();
sample = sample_hemisphere(r1, r2);
rotate_sample(sample, n);
rr = Ray(normalize(sample), i_pos + (sample * BIAS));
ind_color += r1 * trace_ray(rr, s, rec_level + 1) / PDF;
}
// Calculate environment light contribution
vis = true;
r1 = random01();
r2 = random01();
sample = sample_hemisphere(r1, r2);
rotate_sample(sample, n);
rr = Ray(normalize(sample), i_pos + (sample * BIAS));
// Cast a shadow ray to determine visibility.
for (size_t f = 0; f < s->m_figures.size(); f++) {
if (s->m_figures[f]->intersect(rr, _t)) {
vis = false;
break;
}
}
amb_color = vis ? s->m_env->get_color(rr) * max(dot(n, rr.m_direction), 0.0f) / PDF : vec3(0.0f);
// Add lighting.
color += ((dir_diff_color + ind_color + amb_color) * (_f->m_mat->m_diffuse / pi<float>())) + (_f->m_mat->m_specular * dir_spec_color);
if (specular) {
// Determine the specular reflection color.
if (_f->m_mat->m_rho > 0.0f && rec_level < m_max_depth) {
rr = Ray(normalize(reflect(r.m_direction, n)), i_pos + n * BIAS);
color += _f->m_mat->m_rho * trace_ray(rr, s, rec_level + 1);
} else if (_f->m_mat->m_rho > 0.0f && rec_level >= m_max_depth)
return vec3(0.0f);
}
} else {
// If the material has transmission enabled, calculate the Fresnel term.
kr = fresnel(r.m_direction, n, r.m_ref_index, _f->m_mat->m_ref_index);
// Determine the specular reflection color.
if (kr > 0.0f && rec_level < m_max_depth) {
rr = Ray(normalize(reflect(r.m_direction, n)), i_pos + n * BIAS);
color += kr * trace_ray(rr, s, rec_level + 1);
} else if (rec_level >= m_max_depth)
return vec3(0.0f);
// Determine the transmission color.
if (_f->m_mat->m_refract && kr < 1.0f && rec_level < m_max_depth) {
rr = Ray(normalize(refract(r.m_direction, n, r.m_ref_index / _f->m_mat->m_ref_index)), i_pos - n * BIAS, _f->m_mat->m_ref_index);
color += (1.0f - kr) * trace_ray(rr, s, rec_level + 1);
} else if (rec_level >= m_max_depth)
return vec3(0.0f);
}
color += _f->m_mat->m_emission;
p_pos = Vec3(i_pos.x, i_pos.y, i_pos.z);
photon = Photon(p_pos, color.r, color.g, color.b);
m_photon_map.addPhoton(photon);
// Return final color.
return color;
} else
return s->m_env->get_color(r);
}