395 lines
14 KiB
C++
395 lines
14 KiB
C++
#include <iostream>
|
|
#include <fstream>
|
|
#include <iomanip>
|
|
#include <limits>
|
|
#include <vector>
|
|
#include <utility>
|
|
#include <cstdint>
|
|
#include <cstdlib>
|
|
|
|
#include <glm/gtc/constants.hpp>
|
|
|
|
#include "photon_tracer.hpp"
|
|
#include "sampling.hpp"
|
|
#include "area_light.hpp"
|
|
#include "directional_light.hpp"
|
|
#include "spot_light.hpp"
|
|
|
|
using std::cout;
|
|
using std::cerr;
|
|
using std::endl;
|
|
using std::ifstream;
|
|
using std::ios;
|
|
using std::setw;
|
|
using std::vector;
|
|
using std::pair;
|
|
using std::numeric_limits;
|
|
using namespace glm;
|
|
|
|
#define ANSI_BOLD_YELLOW "\x1b[1;33m"
|
|
#define ANSI_RESET_STYLE "\x1b[m"
|
|
|
|
PhotonTracer::~PhotonTracer() { }
|
|
|
|
vec3 PhotonTracer::trace_ray(Ray & r, Scene * s, unsigned int rec_level) const {
|
|
float t, _t, radius, red, green, blue, kr, w;
|
|
Figure * _f;
|
|
vec3 n, color, i_pos, ref, dir_diff_color, dir_spec_color, p_contrib;
|
|
Ray mv_r, sr, rr;
|
|
bool vis, is_area_light;
|
|
AreaLight * al;
|
|
Vec3 mn, mx;
|
|
vector<Photon> photons;
|
|
vector<Photon> caustics;
|
|
|
|
t = numeric_limits<float>::max();
|
|
_f = NULL;
|
|
|
|
// Find the closest intersecting surface.
|
|
for (size_t f = 0; f < s->m_figures.size(); f++) {
|
|
if (s->m_figures[f]->intersect(r, _t) && _t < t) {
|
|
t = _t;
|
|
_f = s->m_figures[f];
|
|
}
|
|
}
|
|
|
|
// If this ray intersects something:
|
|
if (_f != NULL) {
|
|
// Take the intersection point and the normal of the surface at that point.
|
|
i_pos = r.m_origin + (t * r.m_direction);
|
|
n = _f->normal_at_int(r, t);
|
|
|
|
is_area_light = false;
|
|
// Check if the object is an area light;
|
|
for (size_t l = 0; l < s->m_lights.size(); l++) {
|
|
if (s->m_lights[l]->light_type() == Light::AREA && static_cast<AreaLight *>(s->m_lights[l])->m_figure == _f)
|
|
is_area_light = true;
|
|
}
|
|
|
|
// If the object is an area light, return it's emission value.
|
|
if (is_area_light) {
|
|
return _f->m_mat->m_emission;
|
|
|
|
// Check if the material is not reflective/refractive.
|
|
} else if (!_f->m_mat->m_refract) {
|
|
|
|
// Calculate the direct lighting.
|
|
for (size_t l = 0; l < s->m_lights.size(); l++) {
|
|
// For every light source
|
|
vis = true;
|
|
|
|
if (s->m_lights[l]->light_type() == Light::INFINITESIMAL) {
|
|
// Cast a shadow ray to determine visibility.
|
|
sr = Ray(s->m_lights[l]->direction(i_pos), i_pos + n * BIAS);
|
|
for (size_t f = 0; f < s->m_figures.size(); f++) {
|
|
if (s->m_figures[f]->intersect(sr, _t) && _t < s->m_lights[l]->distance(i_pos)) {
|
|
vis = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
} else if (s->m_lights[l]->light_type() == Light::AREA) {
|
|
// Cast a shadow ray towards a sample point on the surface of the light source.
|
|
al = static_cast<AreaLight *>(s->m_lights[l]);
|
|
al->sample_at_surface();
|
|
sr = Ray(al->direction(i_pos), i_pos + (n * BIAS));
|
|
|
|
for (size_t f = 0; f < s->m_figures.size(); f++) {
|
|
// Avoid self-intersection with the light source.
|
|
if (al->m_figure != s->m_figures[f]) {
|
|
if (s->m_figures[f]->intersect(sr, _t) && _t < al->distance(i_pos)) {
|
|
vis = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Evaluate the shading model accounting for visibility.
|
|
dir_diff_color += vis ? s->m_lights[l]->diffuse(n, r, i_pos, *_f->m_mat) : vec3(0.0f);
|
|
dir_spec_color += vis ? s->m_lights[l]->specular(n, r, i_pos, *_f->m_mat) : vec3(0.0f);
|
|
}
|
|
|
|
// TODO: Change photon map search method for hemisphere search.
|
|
// radius = m_h_radius;
|
|
// mn = Vec3(i_pos.x - radius, i_pos.y - radius, i_pos.z - radius);
|
|
// mx = Vec3(i_pos.x + radius, i_pos.y + radius, i_pos.z + radius);
|
|
|
|
// while((photons = m_photon_map.findInRange(mn, mx)).size() == 0 && radius < 5.0) {
|
|
// radius *= 2;
|
|
// mn = Vec3(i_pos.x - radius, i_pos.y - radius, i_pos.z - radius);
|
|
// mx = Vec3(i_pos.x + radius, i_pos.y + radius, i_pos.z + radius);
|
|
// }
|
|
m_photon_map.find_by_distance(photons, i_pos, n, m_h_radius, 1000);
|
|
m_caustics_map.find_by_distance(caustics, i_pos, n, m_h_radius, 1000);
|
|
photons.insert(photons.end(), caustics.begin(), caustics.end());
|
|
|
|
for (Photon p : photons) {
|
|
w = max(0.0f, -dot(n, -p.direction.toVec3()));
|
|
w *= (1.0f - m_h_radius) / 25.0f;
|
|
p.getColor(red, green, blue);
|
|
p_contrib += vec3(red, green, blue) * w;
|
|
}
|
|
|
|
// for (Photon p : photons) {
|
|
// p.getColor(red, green, blue);
|
|
// p_contrib += vec3(red, green, blue);
|
|
// }
|
|
// for (Photon p : caustics) {
|
|
// p.getColor(red, green, blue);
|
|
// p_contrib += vec3(red, green, blue);
|
|
// }
|
|
// p_contrib *= (1.0f / pi<float>()) / (m_h_radius * m_h_radius);
|
|
// color += (1.0f - _f->m_mat->m_rho) * (((dir_diff_color + p_contrib) * (_f->m_mat->m_diffuse / pi<float>())) +
|
|
// (_f->m_mat->m_specular * dir_spec_color));
|
|
color += (1.0f - _f->m_mat->m_rho) * p_contrib;
|
|
|
|
// Determine the specular reflection color.
|
|
if (_f->m_mat->m_rho > 0.0f && rec_level < m_max_depth) {
|
|
rr = Ray(normalize(reflect(r.m_direction, n)), i_pos + n * BIAS);
|
|
color += _f->m_mat->m_rho * trace_ray(rr, s, rec_level + 1);
|
|
} else if (_f->m_mat->m_rho > 0.0f && rec_level >= m_max_depth)
|
|
return vec3(0.0f);
|
|
|
|
} else {
|
|
// If the material has transmission enabled, calculate the Fresnel term.
|
|
kr = fresnel(r.m_direction, n, r.m_ref_index, _f->m_mat->m_ref_index);
|
|
|
|
// Determine the specular reflection color.
|
|
if (kr > 0.0f && rec_level < m_max_depth) {
|
|
rr = Ray(normalize(reflect(r.m_direction, n)), i_pos + n * BIAS);
|
|
color += kr * trace_ray(rr, s, rec_level + 1);
|
|
} else if (rec_level >= m_max_depth)
|
|
return vec3(0.0f);
|
|
|
|
// Determine the transmission color.
|
|
if (_f->m_mat->m_refract && kr < 1.0f && rec_level < m_max_depth) {
|
|
rr = Ray(normalize(refract(r.m_direction, n, r.m_ref_index / _f->m_mat->m_ref_index)), i_pos - n * BIAS, _f->m_mat->m_ref_index);
|
|
color += (1.0f - kr) * trace_ray(rr, s, rec_level + 1);
|
|
} else if (rec_level >= m_max_depth)
|
|
return vec3(0.0f);
|
|
}
|
|
|
|
// Return final color.
|
|
return _f->m_mat->m_emission + color;
|
|
|
|
} else
|
|
return s->m_env->get_color(r);
|
|
}
|
|
|
|
void PhotonTracer::photon_tracing(Scene * s, const size_t n_photons_per_ligth, const bool specular) {
|
|
AreaLight * al = NULL;
|
|
PointLight * pl = NULL;
|
|
vec3 l_sample, s_normal, h_sample, power;
|
|
Vec3 ls, dir;
|
|
float r1, r2;
|
|
Photon ph;
|
|
uint64_t total = 0, current = 0;
|
|
vector<Figure *> spec_figures;
|
|
|
|
for (Light * light : s->m_lights) {
|
|
total += light->light_type() == Light::AREA ||
|
|
(light->light_type() == Light::INFINITESIMAL &&
|
|
(dynamic_cast<SpotLight *>(light) == NULL || dynamic_cast<DirectionalLight *>(light) == NULL)) ? 1 : 0;
|
|
}
|
|
total *= static_cast<uint64_t>(n_photons_per_ligth);
|
|
|
|
// Separate specular objects to build the caustics photon map.
|
|
if (specular) {
|
|
for (Figure * sf : s->m_figures)
|
|
if (sf->m_mat->m_refract || sf->m_mat->m_rho > 0.0f)
|
|
spec_figures.push_back(sf);
|
|
|
|
if (spec_figures.size() == 0) {
|
|
cout << ANSI_BOLD_YELLOW << "There are no specular objects in the scene." << ANSI_RESET_STYLE << endl;
|
|
cout << ANSI_BOLD_YELLOW << "Skipping caustics photon map." << ANSI_RESET_STYLE << endl;
|
|
return;
|
|
} else
|
|
cout << "There " << (spec_figures.size() == 1 ? "is " : "are ") << ANSI_BOLD_YELLOW << spec_figures.size() << ANSI_RESET_STYLE <<
|
|
" specular " << (spec_figures.size() == 1 ? "object" : "objects") << " in the scene." << endl;
|
|
}
|
|
|
|
cout << "Tracing a total of " << ANSI_BOLD_YELLOW << total << ANSI_RESET_STYLE << " primary photons:" << endl;
|
|
for (Light * l : s->m_lights) {
|
|
/* Only area lights and point lights supported right now. */
|
|
if (l->light_type() == Light::INFINITESIMAL && (dynamic_cast<SpotLight *>(l) != NULL || dynamic_cast<DirectionalLight *>(l) != NULL))
|
|
continue;
|
|
|
|
if (l->light_type() == Light::AREA)
|
|
al = static_cast<AreaLight *>(l);
|
|
else
|
|
pl = static_cast<PointLight *>(l);
|
|
|
|
assert(pl != NULL || al != NULL);
|
|
|
|
#pragma omp parallel for schedule(dynamic, 1) private(l_sample, s_normal, h_sample, r1, r2) shared(current)
|
|
for (size_t p = 0; p < n_photons_per_ligth; p++) {
|
|
if (al != NULL) {
|
|
l_sample = al->sample_at_surface();
|
|
s_normal = al->normal_at_last_sample();
|
|
l_sample = l_sample + (BIAS * s_normal);
|
|
|
|
if (!specular || (specular && spec_figures.size() == 0)) {
|
|
// Generate photon from light source in random direction.
|
|
r1 = random01();
|
|
r2 = random01();
|
|
h_sample = normalize(sample_hemisphere(r1, r2));
|
|
rotate_sample(h_sample, s_normal);
|
|
} else {
|
|
// Generate photon from light source in the direction of specular reflective objects.
|
|
h_sample = normalize(spec_figures[p % spec_figures.size()]->sample_at_surface() - l_sample);
|
|
}
|
|
|
|
// Create the primary photon.
|
|
power = (al->m_figure->m_mat->m_emission / static_cast<float>(n_photons_per_ligth));
|
|
|
|
} else if (pl != NULL) {
|
|
l_sample = glm::vec3(pl->m_position.x, pl->m_position.y, pl->m_position.z);
|
|
|
|
if (!specular || (specular && spec_figures.size() == 0)) {
|
|
h_sample = normalize(sample_sphere(l_sample, 1.0f) - l_sample);
|
|
} else {
|
|
// Generate photon from light source in the direction of specular reflective objects.
|
|
h_sample = normalize(spec_figures[p % spec_figures.size()]->sample_at_surface() - l_sample);
|
|
}
|
|
|
|
power = (pl->m_diffuse / static_cast<float>(n_photons_per_ligth));
|
|
}
|
|
|
|
ls = Vec3(l_sample.x, l_sample.y, l_sample.z);
|
|
dir = Vec3(h_sample.x, h_sample.y, h_sample.z);
|
|
ph = Photon(ls, dir, power.r, power.g, power.b, 1.0f);
|
|
|
|
trace_photon(ph, s, 0);
|
|
|
|
#pragma omp atomic
|
|
current++;
|
|
}
|
|
|
|
cout << "\r" << setw(3) << static_cast<size_t>((static_cast<double>(current) / static_cast<double>(total)) * 100.0) << "% done.";
|
|
}
|
|
cout << endl;
|
|
|
|
cout << "Generated " << ANSI_BOLD_YELLOW << m_photon_map.getNumPhotons() << ANSI_RESET_STYLE << " total photons." << endl;
|
|
m_photon_map.save_photon_list(specular ? "caustics.txt" : "photons.txt");
|
|
}
|
|
|
|
void PhotonTracer::build_photon_map(const char * photons_file, const bool caustics) {
|
|
Photon ph;
|
|
float x, y, z, dx, dy, dz, r, g, b, rc;
|
|
ifstream ifs(photons_file, ios::in);
|
|
|
|
if (!ifs.is_open()) {
|
|
cerr << "Failed to open the file " << photons_file << " for reading." << endl;
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
cout << "Reading photon definitions from " << ANSI_BOLD_YELLOW << photons_file << ANSI_RESET_STYLE << "." << endl;
|
|
while (!ifs.eof()) {
|
|
ifs >> x >> y >> z >> dx >> dy >> dz >> r >> g >> b >> rc;
|
|
ph = Photon(Vec3(x, y, z), Vec3(dx, dy, dz), r, g, b, rc);
|
|
m_photon_map.addPhoton(ph);
|
|
}
|
|
cout << "Read " << ANSI_BOLD_YELLOW << m_photon_map.getNumPhotons() << ANSI_RESET_STYLE << " photons from the file." << endl;
|
|
|
|
ifs.close();
|
|
|
|
build_photon_map(caustics);
|
|
}
|
|
|
|
void PhotonTracer::build_photon_map(const bool caustics) {
|
|
cout << "Building photon map Kd-tree." << endl;
|
|
if (!caustics)
|
|
m_photon_map.buildKdTree();
|
|
else
|
|
m_caustics_map.buildKdTree();
|
|
}
|
|
|
|
void PhotonTracer::trace_photon(Photon & ph, Scene * s, const unsigned int rec_level) {
|
|
Photon photon;
|
|
float t, _t, red, green, blue;
|
|
Figure * _f;
|
|
vec3 n, color, i_pos, sample, ph_dir, ph_pos;
|
|
Vec3 p_pos, p_dir;
|
|
Ray r;
|
|
float kr, r1, r2;
|
|
|
|
t = numeric_limits<float>::max();
|
|
_f = NULL;
|
|
ph.getColor(red, green, blue);
|
|
|
|
// Find the closest intersecting surface.
|
|
r = Ray(ph.direction.x, ph.direction.y, ph.direction.z, ph.position.x, ph.position.y, ph.position.z);
|
|
for (size_t f = 0; f < s->m_figures.size(); f++) {
|
|
if (s->m_figures[f]->intersect(r, _t) && _t < t) {
|
|
t = _t;
|
|
_f = s->m_figures[f];
|
|
}
|
|
}
|
|
|
|
// If this ray intersects something:
|
|
if (_f != NULL) {
|
|
// Take the intersection point and the normal of the surface at that point.
|
|
i_pos = r.m_origin + (t * r.m_direction);
|
|
n = _f->normal_at_int(r, t);
|
|
|
|
// Store the diffuse photon and trace.
|
|
if (!_f->m_mat->m_refract){
|
|
#pragma omp critical
|
|
{
|
|
m_photon_map.addPhoton(ph);
|
|
}
|
|
|
|
r1 = random01();
|
|
r2 = random01();
|
|
sample = sample_hemisphere(r1, r2);
|
|
rotate_sample(sample, n);
|
|
normalize(sample);
|
|
color = (1.0f - _f->m_mat->m_rho) * (vec3(red, green, blue) * (_f->m_mat->m_diffuse / pi<float>()));
|
|
p_pos = Vec3(i_pos.x, i_pos.y, i_pos.z);
|
|
p_dir = Vec3(sample.x, sample.y, sample.z);
|
|
photon = Photon(p_pos, p_dir, color.r, color.g, color.b, ph.ref_index);
|
|
|
|
if (rec_level < m_max_depth)
|
|
trace_photon(photon, s, rec_level + 1);
|
|
|
|
if (_f->m_mat->m_rho > 0.0f && rec_level < m_max_depth) {
|
|
color = (_f->m_mat->m_rho) * vec3(red, green, blue);
|
|
i_pos += n * BIAS;
|
|
p_pos = Vec3(i_pos.x, i_pos.y, i_pos.z);
|
|
ph_dir = normalize(reflect(vec3(ph.direction.x, ph.direction.y, ph.direction.z), n));
|
|
p_dir = Vec3(ph_dir.x, ph_dir.y, ph_dir.z);
|
|
photon = Photon(p_pos, p_dir, color.r, color.g, color.b, ph.ref_index);
|
|
trace_photon(photon, s, rec_level + 1);
|
|
}
|
|
|
|
} else if (_f->m_mat->m_refract && rec_level < m_max_depth) {
|
|
|
|
// If the material has transmission enabled, calculate the Fresnel term.
|
|
kr = fresnel(r.m_direction, n, ph.ref_index, _f->m_mat->m_ref_index);
|
|
|
|
// Trace the reflected photon.
|
|
if (kr > 0.0f) {
|
|
color = kr * vec3(red, green, blue);
|
|
i_pos += n * BIAS;
|
|
p_pos = Vec3(i_pos.x, i_pos.y, i_pos.z);
|
|
ph_dir = normalize(reflect(vec3(ph.direction.x, ph.direction.y, ph.direction.z), n));
|
|
p_dir = Vec3(ph_dir.x, ph_dir.y, ph_dir.z);
|
|
photon = Photon(p_pos, p_dir, color.r, color.g, color.b, ph.ref_index);
|
|
trace_photon(photon, s, rec_level + 1);
|
|
}
|
|
|
|
// Trace the transmitted photon.
|
|
if (kr < 1.0f) {
|
|
color = (1.0f - kr) * vec3(red, green, blue);
|
|
i_pos -= n * (2 * BIAS);
|
|
p_pos = Vec3(i_pos.x, i_pos.y, i_pos.z);
|
|
ph_dir = normalize(refract(vec3(ph.direction.x, ph.direction.y, ph.direction.z), n, ph.ref_index / _f->m_mat->m_ref_index));
|
|
p_dir = Vec3(ph_dir.x, ph_dir.y, ph_dir.z);
|
|
photon = Photon(p_pos, p_dir, color.r, color.g, color.b, _f->m_mat->m_ref_index);
|
|
trace_photon(photon, s, rec_level + 1);
|
|
}
|
|
}
|
|
}
|
|
}
|