Added partial support for point lights in photon map generation.

This commit is contained in:
2017-03-06 18:00:41 -04:00
parent 8e7c6490ec
commit 1faaaf0d63
2 changed files with 67 additions and 30 deletions

View File

@@ -114,7 +114,7 @@ int main(int argc, char ** argv) {
cout << "Using " << ANSI_BOLD_YELLOW << "Jensen's photon mapping" << ANSI_RESET_STYLE << " with ray tracing." << endl;
p_tracer = new PhotonTracer(g_max_depth, g_p_sample_radius);
if (g_photons_file == NULL) {
//cout << "Building global photon map with " << ANSI_BOLD_YELLOW << g_photons / 2 << ANSI_RESET_STYLE << " primary photons per light source." << endl;
cout << "Building global photon map with " << ANSI_BOLD_YELLOW << g_photons / 2 << ANSI_RESET_STYLE << " primary photons per light source." << endl;
//p_tracer->photon_tracing(scn, g_photons / 2);
cout << "Building caustics photon map with " << ANSI_BOLD_YELLOW << g_photons / 2 << ANSI_RESET_STYLE << " primary photons per light source." << endl;
p_tracer->photon_tracing(scn, g_photons / 2, true);

View File

@@ -12,6 +12,8 @@
#include "photon_tracer.hpp"
#include "sampling.hpp"
#include "area_light.hpp"
#include "directional_light.hpp"
#include "spot_light.hpp"
using std::cout;
using std::cerr;
@@ -164,7 +166,8 @@ vec3 PhotonTracer::trace_ray(Ray & r, Scene * s, unsigned int rec_level) const {
void PhotonTracer::photon_tracing(Scene * s, const size_t n_photons_per_ligth, const bool specular) {
Light * l;
AreaLight * al;
AreaLight * al = NULL;
PointLight * pl = NULL;
vec3 l_sample, s_normal, h_sample, power;
Vec3 ls, dir;
float r1, r2;
@@ -173,52 +176,86 @@ void PhotonTracer::photon_tracing(Scene * s, const size_t n_photons_per_ligth, c
vector<Figure *> spec_figures;
for (vector<Light *>::iterator it = s->m_lights.begin(); it != s->m_lights.end(); it++) {
total += (*it)->light_type() == Light::AREA ? 1 : 0;
total += (*it)->light_type() == Light::AREA ||
((*it)->light_type() == Light::INFINITESIMAL &&
(dynamic_cast<SpotLight *>((*it)) == NULL || dynamic_cast<DirectionalLight *>((*it)) == NULL)) ? 1 : 0;
}
total *= static_cast<uint64_t>(n_photons_per_ligth);
cout << "Tracing a total of " << ANSI_BOLD_YELLOW << total << ANSI_RESET_STYLE << " primary photons:" << endl;
// Separate specular objects to build the caustics photon map.
if (specular) {
for (vector<Figure *>::iterator it = s->m_figures.begin(); it != s->m_figures.end(); it++)
if ((*it)->m_mat->m_refract || (*it)->m_mat->m_rho > 0.0f)
spec_figures.push_back((*it));
if (spec_figures.size() == 0) {
cout << ANSI_BOLD_YELLOW << "There are no specular objects in the scene." << ANSI_RESET_STYLE << endl;
cout << ANSI_BOLD_YELLOW << "Skipping caustics photon map." << ANSI_RESET_STYLE << endl;
return;
} else
cout << "There " << (spec_figures.size() == 1 ? "is " : "are ") << ANSI_BOLD_YELLOW << spec_figures.size() << ANSI_RESET_STYLE <<
" specular " << (spec_figures.size() == 1 ? "object" : "objects") << " in the scene." << endl;
}
cout << "Tracing a total of " << ANSI_BOLD_YELLOW << total << ANSI_RESET_STYLE << " primary photons:" << endl;
for (vector<Light *>::iterator it = s->m_lights.begin(); it != s->m_lights.end(); it++) {
l = *it;
/* Only area lights supported right now. */
if (l->light_type() != Light::AREA)
/* Only area lights and point lights supported right now. */
if (l->light_type() == Light::INFINITESIMAL && (dynamic_cast<SpotLight *>(l) != NULL || dynamic_cast<DirectionalLight *>(l) != NULL))
continue;
al = static_cast<AreaLight *>(l);
if (l->light_type() == Light::AREA)
al = static_cast<AreaLight *>(l);
else
pl = static_cast<PointLight *>(l);
assert(pl != NULL || al != NULL);
#pragma omp parallel for schedule(dynamic, 1) private(l_sample, s_normal, h_sample, r1, r2) shared(current)
for (size_t p = 0; p < n_photons_per_ligth; p++) {
l_sample = al->sample_at_surface();
s_normal = al->normal_at_last_sample();
if (al != NULL) {
l_sample = al->sample_at_surface();
s_normal = al->normal_at_last_sample();
if (!specular || spec_figures.size() == 0) {
// Generate photon from light source in random direction.
r1 = random01();
r2 = random01();
h_sample = normalize(sample_hemisphere(r1, r2));
rotate_sample(h_sample, s_normal);
} else {
// Generate photon from light source in direction of specular reflective objects.
h_sample = normalize(spec_figures[p % spec_figures.size()]->sample_at_surface() - l_sample);
}
if (!specular || (specular && spec_figures.size() == 0)) {
// Generate photon from light source in random direction.
r1 = random01();
r2 = random01();
h_sample = normalize(sample_hemisphere(r1, r2));
rotate_sample(h_sample, s_normal);
} else {
// Generate photon from light source in direction of specular reflective objects.
h_sample = spec_figures[p % spec_figures.size()]->sample_at_surface();
h_sample = normalize(h_sample - l_sample);
}
// Create the primary photon.
ls = Vec3(l_sample.x, l_sample.y, l_sample.z);
dir = Vec3(h_sample.x, h_sample.y, h_sample.z);
power = (al->m_figure->m_mat->m_emission / static_cast<float>(n_photons_per_ligth));
ph = Photon(ls, dir, power.r, power.g, power.b, 1.0f);
// Create the primary photon.
ls = Vec3(l_sample.x, l_sample.y, l_sample.z);
dir = Vec3(h_sample.x, h_sample.y, h_sample.z);
power = (al->m_figure->m_mat->m_emission / static_cast<float>(n_photons_per_ligth)) / (al->m_figure->pdf());
ph = Photon(ls, dir, power.r, power.g, power.b, 1.0f);
#pragma omp critical
{
m_photon_map.addPhoton(ph);
{
m_photon_map.addPhoton(ph);
}
} else if (pl != NULL) {
l_sample = glm::vec3(pl->m_position.x, pl->m_position.y, pl->m_position.z);
if (!specular || (specular && spec_figures.size() == 0)) {
} else {
// Generate photon from light source in direction of specular reflective objects.
h_sample = spec_figures[p % spec_figures.size()]->sample_at_surface();
h_sample = normalize(h_sample - l_sample);
}
ls = Vec3(l_sample.x, l_sample.y, l_sample.z);
dir = Vec3(h_sample.x, h_sample.y, h_sample.z);
power = (pl->m_diffuse / static_cast<float>(n_photons_per_ligth));
ph = Photon(ls, dir, power.r, power.g, power.b, 1.0f);
}
trace_photon(ph, s, 0);