Added photon tracing.
This commit is contained in:
@@ -76,7 +76,11 @@ public:
|
|||||||
return vec3(0.0f);
|
return vec3(0.0f);
|
||||||
}
|
}
|
||||||
|
|
||||||
virtual void sample_at_surface(vec3 point) = 0;
|
virtual vec3 normal_at_last_sample() {
|
||||||
|
return m_n_at_last_sample;
|
||||||
|
}
|
||||||
|
|
||||||
|
virtual vec3 sample_at_surface() = 0;
|
||||||
|
|
||||||
protected:
|
protected:
|
||||||
vec3 m_last_sample;
|
vec3 m_last_sample;
|
||||||
|
@@ -1,7 +1,8 @@
|
|||||||
#include "disk_area_light.hpp"
|
#include "disk_area_light.hpp"
|
||||||
|
|
||||||
void DiskAreaLight::sample_at_surface(vec3 point) {
|
vec3 DiskAreaLight::sample_at_surface() {
|
||||||
Disk * d = static_cast<Disk *>(m_figure);
|
Disk * d = static_cast<Disk *>(m_figure);
|
||||||
m_last_sample = m_figure->sample_at_surface();
|
m_last_sample = m_figure->sample_at_surface();
|
||||||
m_n_at_last_sample = d->m_normal;
|
m_n_at_last_sample = d->m_normal;
|
||||||
|
return m_last_sample;
|
||||||
}
|
}
|
||||||
|
@@ -9,7 +9,7 @@ class DiskAreaLight: public AreaLight {
|
|||||||
public:
|
public:
|
||||||
DiskAreaLight(Disk * _s, float _c = 1.0, float _l = 0.0, float _q = 0.0): AreaLight(static_cast<Figure *>(_s), _c, _l, _q) { }
|
DiskAreaLight(Disk * _s, float _c = 1.0, float _l = 0.0, float _q = 0.0): AreaLight(static_cast<Figure *>(_s), _c, _l, _q) { }
|
||||||
|
|
||||||
virtual void sample_at_surface(vec3 point);
|
virtual vec3 sample_at_surface();
|
||||||
};
|
};
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
@@ -73,7 +73,7 @@ vec3 PathTracer::trace_ray(Ray & r, Scene * s, unsigned int rec_level) const {
|
|||||||
} else if (s->m_lights[l]->light_type() == Light::AREA) {
|
} else if (s->m_lights[l]->light_type() == Light::AREA) {
|
||||||
// Cast a shadow ray towards a sample point on the surface of the light source.
|
// Cast a shadow ray towards a sample point on the surface of the light source.
|
||||||
al = static_cast<AreaLight *>(s->m_lights[l]);
|
al = static_cast<AreaLight *>(s->m_lights[l]);
|
||||||
al->sample_at_surface(i_pos);
|
al->sample_at_surface();
|
||||||
sr = Ray(al->direction(i_pos), i_pos + (n * BIAS));
|
sr = Ray(al->direction(i_pos), i_pos + (n * BIAS));
|
||||||
|
|
||||||
for (size_t f = 0; f < s->m_figures.size(); f++) {
|
for (size_t f = 0; f < s->m_figures.size(); f++) {
|
||||||
|
@@ -12,9 +12,160 @@ using namespace glm;
|
|||||||
PhotonTracer::~PhotonTracer() { }
|
PhotonTracer::~PhotonTracer() { }
|
||||||
|
|
||||||
vec3 PhotonTracer::trace_ray(Ray & r, Scene * s, unsigned int rec_level) const {
|
vec3 PhotonTracer::trace_ray(Ray & r, Scene * s, unsigned int rec_level) const {
|
||||||
|
float t, _t;
|
||||||
|
Figure * _f;
|
||||||
|
vec3 n, color, i_pos, ref, dir_diff_color, dir_spec_color;
|
||||||
|
Ray mv_r, sr, rr;
|
||||||
|
bool vis, is_area_light;
|
||||||
|
float kr;
|
||||||
|
AreaLight * al;
|
||||||
|
|
||||||
|
t = numeric_limits<float>::max();
|
||||||
|
_f = NULL;
|
||||||
|
|
||||||
|
// Find the closest intersecting surface.
|
||||||
|
for (size_t f = 0; f < s->m_figures.size(); f++) {
|
||||||
|
if (s->m_figures[f]->intersect(r, _t) && _t < t) {
|
||||||
|
t = _t;
|
||||||
|
_f = s->m_figures[f];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// If this ray intersects something:
|
||||||
|
if (_f != NULL) {
|
||||||
|
// Take the intersection point and the normal of the surface at that point.
|
||||||
|
i_pos = r.m_origin + (t * r.m_direction);
|
||||||
|
n = _f->normal_at_int(r, t);
|
||||||
|
|
||||||
|
is_area_light = false;
|
||||||
|
// Check if the object is an area light;
|
||||||
|
for (size_t l = 0; l < s->m_lights.size(); l++) {
|
||||||
|
if (s->m_lights[l]->light_type() == Light::AREA && static_cast<AreaLight *>(s->m_lights[l])->m_figure == _f)
|
||||||
|
is_area_light = true;
|
||||||
|
}
|
||||||
|
|
||||||
|
// If the object is an area light, return it's emission value.
|
||||||
|
if (is_area_light) {
|
||||||
|
return _f->m_mat->m_emission;
|
||||||
|
|
||||||
|
// Check if the material is not reflective/refractive.
|
||||||
|
} else if (!_f->m_mat->m_refract) {
|
||||||
|
|
||||||
|
// Calculate the direct lighting.
|
||||||
|
for (size_t l = 0; l < s->m_lights.size(); l++) {
|
||||||
|
// For every light source
|
||||||
|
vis = true;
|
||||||
|
|
||||||
|
if (s->m_lights[l]->light_type() == Light::INFINITESIMAL) {
|
||||||
|
// Cast a shadow ray to determine visibility.
|
||||||
|
sr = Ray(s->m_lights[l]->direction(i_pos), i_pos + n * BIAS);
|
||||||
|
for (size_t f = 0; f < s->m_figures.size(); f++) {
|
||||||
|
if (s->m_figures[f]->intersect(sr, _t) && _t < s->m_lights[l]->distance(i_pos)) {
|
||||||
|
vis = false;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
} else if (s->m_lights[l]->light_type() == Light::AREA) {
|
||||||
|
// Cast a shadow ray towards a sample point on the surface of the light source.
|
||||||
|
al = static_cast<AreaLight *>(s->m_lights[l]);
|
||||||
|
al->sample_at_surface();
|
||||||
|
sr = Ray(al->direction(i_pos), i_pos + (n * BIAS));
|
||||||
|
|
||||||
|
for (size_t f = 0; f < s->m_figures.size(); f++) {
|
||||||
|
// Avoid self-intersection with the light source.
|
||||||
|
if (al->m_figure != s->m_figures[f]) {
|
||||||
|
if (s->m_figures[f]->intersect(sr, _t) && _t < al->distance(i_pos)) {
|
||||||
|
vis = false;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Evaluate the shading model accounting for visibility.
|
||||||
|
dir_diff_color += vis ? s->m_lights[l]->diffuse(n, r, i_pos, *_f->m_mat) : vec3(0.0f);
|
||||||
|
dir_spec_color += vis ? s->m_lights[l]->specular(n, r, i_pos, *_f->m_mat) : vec3(0.0f);
|
||||||
|
}
|
||||||
|
|
||||||
|
color += (dir_diff_color * (_f->m_mat->m_diffuse / pi<float>())) + (_f->m_mat->m_specular * dir_spec_color);
|
||||||
|
|
||||||
|
// Determine the specular reflection color.
|
||||||
|
if (_f->m_mat->m_rho > 0.0f && rec_level < m_max_depth) {
|
||||||
|
rr = Ray(normalize(reflect(r.m_direction, n)), i_pos + n * BIAS);
|
||||||
|
color += _f->m_mat->m_rho * trace_ray(rr, s, rec_level + 1);
|
||||||
|
} else if (_f->m_mat->m_rho > 0.0f && rec_level >= m_max_depth)
|
||||||
|
return vec3(0.0f);
|
||||||
|
|
||||||
|
} else {
|
||||||
|
// If the material has transmission enabled, calculate the Fresnel term.
|
||||||
|
kr = fresnel(r.m_direction, n, r.m_ref_index, _f->m_mat->m_ref_index);
|
||||||
|
|
||||||
|
// Determine the specular reflection color.
|
||||||
|
if (kr > 0.0f && rec_level < m_max_depth) {
|
||||||
|
rr = Ray(normalize(reflect(r.m_direction, n)), i_pos + n * BIAS);
|
||||||
|
color += kr * trace_ray(rr, s, rec_level + 1);
|
||||||
|
} else if (rec_level >= m_max_depth)
|
||||||
|
return vec3(0.0f);
|
||||||
|
|
||||||
|
// Determine the transmission color.
|
||||||
|
if (_f->m_mat->m_refract && kr < 1.0f && rec_level < m_max_depth) {
|
||||||
|
rr = Ray(normalize(refract(r.m_direction, n, r.m_ref_index / _f->m_mat->m_ref_index)), i_pos - n * BIAS, _f->m_mat->m_ref_index);
|
||||||
|
color += (1.0f - kr) * trace_ray(rr, s, rec_level + 1);
|
||||||
|
} else if (rec_level >= m_max_depth)
|
||||||
|
return vec3(0.0f);
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
// Return final color.
|
||||||
|
return _f->m_mat->m_emission + color;
|
||||||
|
|
||||||
|
} else
|
||||||
|
return s->m_env->get_color(r);
|
||||||
|
}
|
||||||
|
|
||||||
|
void PhotonTracer::build_photon_map(Scene * s, const size_t n_photons_per_ligth, const bool specular) {
|
||||||
|
Light * l;
|
||||||
|
AreaLight * al;
|
||||||
|
vec3 l_sample, s_normal, h_sample;
|
||||||
|
float r1, r2;
|
||||||
|
Ray rr;
|
||||||
|
|
||||||
|
for (vector<Light *>::iterator it = s->m_lights.begin(); it != s->m_lights.end(); it++) {
|
||||||
|
for (size_t p = 0; p < n_photons_per_ligth; p++) {
|
||||||
|
l = *it;
|
||||||
|
|
||||||
|
/* Only area lights supported right now. */
|
||||||
|
if (l->light_type() != Light::AREA)
|
||||||
|
continue;
|
||||||
|
|
||||||
|
al = static_cast<AreaLight *>(l);
|
||||||
|
|
||||||
|
if (!specular) {
|
||||||
|
l_sample = al->sample_at_surface();
|
||||||
|
s_normal = al->normal_at_last_sample();
|
||||||
|
|
||||||
|
r1 = random01();
|
||||||
|
r2 = random01();
|
||||||
|
h_sample = sample_hemisphere(r1, r2);
|
||||||
|
rotate_sample(h_sample, s_normal);
|
||||||
|
rr = Ray(normalize(h_sample), l_sample + (h_sample * BIAS));
|
||||||
|
|
||||||
|
} else {
|
||||||
|
// TODO: Generate photon from light source in direction of specular reflective objects.
|
||||||
|
}
|
||||||
|
|
||||||
|
trace_photon(rr, s, 0, specular);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
vec3 PhotonTracer::trace_photon(Ray &r, Scene * s, const unsigned int rec_level, const bool specular) {
|
||||||
|
Photon photon;
|
||||||
float t, _t;
|
float t, _t;
|
||||||
Figure * _f;
|
Figure * _f;
|
||||||
vec3 n, color, i_pos, ref, sample, dir_diff_color, dir_spec_color, ind_color, amb_color;
|
vec3 n, color, i_pos, ref, sample, dir_diff_color, dir_spec_color, ind_color, amb_color;
|
||||||
|
Vec3 p_pos;
|
||||||
Ray mv_r, sr, rr;
|
Ray mv_r, sr, rr;
|
||||||
bool vis, is_area_light = false;
|
bool vis, is_area_light = false;
|
||||||
float kr, r1, r2;
|
float kr, r1, r2;
|
||||||
@@ -46,6 +197,10 @@ vec3 PhotonTracer::trace_ray(Ray & r, Scene * s, unsigned int rec_level) const {
|
|||||||
|
|
||||||
// If the object is an area light, return it's emission value.
|
// If the object is an area light, return it's emission value.
|
||||||
if (is_area_light) {
|
if (is_area_light) {
|
||||||
|
p_pos = Vec3(i_pos.x, i_pos.y, i_pos.z);
|
||||||
|
photon = Photon(p_pos, _f->m_mat->m_emission.r, _f->m_mat->m_emission.g, _f->m_mat->m_emission.b);
|
||||||
|
m_photon_map.addPhoton(photon);
|
||||||
|
|
||||||
return _f->m_mat->m_emission;
|
return _f->m_mat->m_emission;
|
||||||
|
|
||||||
// Check if the material is not reflective/refractive.
|
// Check if the material is not reflective/refractive.
|
||||||
@@ -73,7 +228,7 @@ vec3 PhotonTracer::trace_ray(Ray & r, Scene * s, unsigned int rec_level) const {
|
|||||||
} else if (s->m_lights[l]->light_type() == Light::AREA) {
|
} else if (s->m_lights[l]->light_type() == Light::AREA) {
|
||||||
// Cast a shadow ray towards a sample point on the surface of the light source.
|
// Cast a shadow ray towards a sample point on the surface of the light source.
|
||||||
al = static_cast<AreaLight *>(s->m_lights[l]);
|
al = static_cast<AreaLight *>(s->m_lights[l]);
|
||||||
al->sample_at_surface(i_pos);
|
al->sample_at_surface();
|
||||||
sr = Ray(al->direction(i_pos), i_pos + (n * BIAS));
|
sr = Ray(al->direction(i_pos), i_pos + (n * BIAS));
|
||||||
|
|
||||||
for (size_t f = 0; f < s->m_figures.size(); f++) {
|
for (size_t f = 0; f < s->m_figures.size(); f++) {
|
||||||
@@ -124,12 +279,14 @@ vec3 PhotonTracer::trace_ray(Ray & r, Scene * s, unsigned int rec_level) const {
|
|||||||
// Add lighting.
|
// Add lighting.
|
||||||
color += ((dir_diff_color + ind_color + amb_color) * (_f->m_mat->m_diffuse / pi<float>())) + (_f->m_mat->m_specular * dir_spec_color);
|
color += ((dir_diff_color + ind_color + amb_color) * (_f->m_mat->m_diffuse / pi<float>())) + (_f->m_mat->m_specular * dir_spec_color);
|
||||||
|
|
||||||
// Determine the specular reflection color.
|
if (specular) {
|
||||||
if (_f->m_mat->m_rho > 0.0f && rec_level < m_max_depth) {
|
// Determine the specular reflection color.
|
||||||
rr = Ray(normalize(reflect(r.m_direction, n)), i_pos + n * BIAS);
|
if (_f->m_mat->m_rho > 0.0f && rec_level < m_max_depth) {
|
||||||
color += _f->m_mat->m_rho * trace_ray(rr, s, rec_level + 1);
|
rr = Ray(normalize(reflect(r.m_direction, n)), i_pos + n * BIAS);
|
||||||
} else if (_f->m_mat->m_rho > 0.0f && rec_level >= m_max_depth)
|
color += _f->m_mat->m_rho * trace_ray(rr, s, rec_level + 1);
|
||||||
|
} else if (_f->m_mat->m_rho > 0.0f && rec_level >= m_max_depth)
|
||||||
return vec3(0.0f);
|
return vec3(0.0f);
|
||||||
|
}
|
||||||
|
|
||||||
} else {
|
} else {
|
||||||
// If the material has transmission enabled, calculate the Fresnel term.
|
// If the material has transmission enabled, calculate the Fresnel term.
|
||||||
@@ -151,30 +308,15 @@ vec3 PhotonTracer::trace_ray(Ray & r, Scene * s, unsigned int rec_level) const {
|
|||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
color += _f->m_mat->m_emission;
|
||||||
|
|
||||||
|
p_pos = Vec3(i_pos.x, i_pos.y, i_pos.z);
|
||||||
|
photon = Photon(p_pos, color.r, color.g, color.b);
|
||||||
|
m_photon_map.addPhoton(photon);
|
||||||
|
|
||||||
// Return final color.
|
// Return final color.
|
||||||
return _f->m_mat->m_emission + color;
|
return color;
|
||||||
|
|
||||||
} else
|
} else
|
||||||
return s->m_env->get_color(r);
|
return s->m_env->get_color(r);
|
||||||
}
|
}
|
||||||
|
|
||||||
void PhotonTracer::build_photon_map(kdTree & photon_map, Scene * s, const unsigned int rec_level, const size_t n_photons_per_ligth, const bool specular) const {
|
|
||||||
Light * l;
|
|
||||||
Photon photon;
|
|
||||||
|
|
||||||
|
|
||||||
for (vector<Light *>::iterator it = s->m_lights.begin(); it != s->m_lights.end(); it++) {
|
|
||||||
for (size_t p = 0; p < n_photons_per_ligth; p++) {
|
|
||||||
l = *it;
|
|
||||||
|
|
||||||
if (!specular) {
|
|
||||||
// TODO: Generate photon from light source.
|
|
||||||
} else {
|
|
||||||
// TODO: Generate photon from light source in direction of specular reflective objects.
|
|
||||||
}
|
|
||||||
// TODO: Trace indirect illumination for the generated sample.
|
|
||||||
|
|
||||||
photon_map.addPhoton(photon);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
@@ -8,14 +8,16 @@
|
|||||||
class PhotonTracer: public Tracer {
|
class PhotonTracer: public Tracer {
|
||||||
public:
|
public:
|
||||||
PhotonTracer(): Tracer() { }
|
PhotonTracer(): Tracer() { }
|
||||||
|
|
||||||
PhotonTracer(unsigned int max_depth): Tracer(max_depth) { };
|
PhotonTracer(unsigned int max_depth): Tracer(max_depth) { };
|
||||||
|
|
||||||
virtual ~PhotonTracer();
|
virtual ~PhotonTracer();
|
||||||
|
|
||||||
virtual vec3 trace_ray(Ray & r, Scene * s, unsigned int rec_level) const;
|
virtual vec3 trace_ray(Ray & r, Scene * s, unsigned int rec_level) const;
|
||||||
|
|
||||||
void build_photon_map(kdTree & photon_map, Scene * s, const unsigned int rec_level, const size_t n_photons_per_ligth = 10000, const bool specular = false) const;
|
void build_photon_map(Scene * s, const size_t n_photons_per_ligth = 10000, const bool specular = false);
|
||||||
|
|
||||||
|
private:
|
||||||
|
kdTree m_photon_map;
|
||||||
|
vec3 trace_photon(Ray &r, Scene * s, const unsigned int rec_level, const bool specular = false);
|
||||||
};
|
};
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
@@ -1,7 +1,8 @@
|
|||||||
#include "sphere_area_light.hpp"
|
#include "sphere_area_light.hpp"
|
||||||
|
|
||||||
void SphereAreaLight::sample_at_surface(vec3 point) {
|
vec3 SphereAreaLight::sample_at_surface() {
|
||||||
Sphere * s = static_cast<Sphere *>(m_figure);
|
Sphere * s = static_cast<Sphere *>(m_figure);
|
||||||
m_last_sample = m_figure->sample_at_surface();
|
m_last_sample = m_figure->sample_at_surface();
|
||||||
m_n_at_last_sample = normalize(vec3((m_last_sample - s->m_center) / s->m_radius));
|
m_n_at_last_sample = normalize(vec3((m_last_sample - s->m_center) / s->m_radius));
|
||||||
|
return m_last_sample;
|
||||||
}
|
}
|
||||||
|
@@ -9,7 +9,7 @@ class SphereAreaLight: public AreaLight {
|
|||||||
public:
|
public:
|
||||||
SphereAreaLight(Sphere * _s, float _c = 1.0, float _l = 0.0, float _q = 0.0): AreaLight(static_cast<Figure *>(_s), _c, _l, _q) { }
|
SphereAreaLight(Sphere * _s, float _c = 1.0, float _l = 0.0, float _q = 0.0): AreaLight(static_cast<Figure *>(_s), _c, _l, _q) { }
|
||||||
|
|
||||||
virtual void sample_at_surface(vec3 point);
|
virtual vec3 sample_at_surface();
|
||||||
};
|
};
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
@@ -69,7 +69,7 @@ vec3 WhittedTracer::trace_ray(Ray & r, Scene * s, unsigned int rec_level) const
|
|||||||
} else if (s->m_lights[l]->light_type() == Light::AREA) {
|
} else if (s->m_lights[l]->light_type() == Light::AREA) {
|
||||||
// Cast a shadow ray towards a sample point on the surface of the light source.
|
// Cast a shadow ray towards a sample point on the surface of the light source.
|
||||||
al = static_cast<AreaLight *>(s->m_lights[l]);
|
al = static_cast<AreaLight *>(s->m_lights[l]);
|
||||||
al->sample_at_surface(i_pos);
|
al->sample_at_surface();
|
||||||
sr = Ray(al->direction(i_pos), i_pos + (n * BIAS));
|
sr = Ray(al->direction(i_pos), i_pos + (n * BIAS));
|
||||||
|
|
||||||
for (size_t f = 0; f < s->m_figures.size(); f++) {
|
for (size_t f = 0; f < s->m_figures.size(); f++) {
|
||||||
|
Reference in New Issue
Block a user