Many changes to jensen.

This commit is contained in:
2017-03-15 10:40:34 -04:00
parent 1faaaf0d63
commit c29d64583f
9 changed files with 167 additions and 63 deletions

View File

@@ -136,11 +136,9 @@ kdTree::~kdTree(){}
void kdTree::addPhoton(Photon p)
{
Photons.push_back(p);
}
void kdTree::createNodeKdTree(treeNode** node, std::vector<Photon> & originalData , int* xyz, int* yzx, int* zxy, superKey key, int begin, int end, int* xyz_2, int* yzx_2, int* zxy_2)
{
if(end - begin < 2)
@@ -400,9 +398,9 @@ size_t kdTree::getNumPhotons() {
return Photons.size();
}
void kdTree::save_photon_list() const {
cout << "Writing photons to \x1b[1;33mphotons.txt\x1b[m" << endl;
ofstream ofs("photons.txt", ios::out);
void kdTree::save_photon_list(const char * file_name) const {
cout << "Writing photons to \x1b[1;33m" << file_name << "\x1b[m" << endl;
ofstream ofs(file_name, ios::out);
float r, g, b;
for (std::vector<Photon>::const_iterator it = Photons.begin(); it != Photons.end(); it++) {
rgbe2float(r, g, b, (*it).radiance);

View File

@@ -165,7 +165,7 @@ public:
void printTree();
std::vector<Photon> findInRange (Vec3 min, Vec3 max) const;
void find_by_distance(std::vector<Photon> & found, const glm::vec3 & point, const glm::vec3 & normal, const float distance, const unsigned int max) const;
void save_photon_list() const;
void save_photon_list(const char * file_name) const;
size_t getNumPhotons();
private:

View File

@@ -49,6 +49,7 @@ typedef enum TRACERS { NONE, WHITTED, MONTE_CARLO, JENSEN } tracer_t;
static char * g_input_file = NULL;
static char * g_photons_file = NULL;
static char * g_caustics_file = NULL;
static char * g_out_file_name = NULL;
static int g_samples = 25;
static float g_fov = 45.0f;
@@ -113,17 +114,22 @@ int main(int argc, char ** argv) {
} else if(g_tracer == JENSEN) {
cout << "Using " << ANSI_BOLD_YELLOW << "Jensen's photon mapping" << ANSI_RESET_STYLE << " with ray tracing." << endl;
p_tracer = new PhotonTracer(g_max_depth, g_p_sample_radius);
if (g_photons_file == NULL) {
if (g_photons_file == NULL && g_caustics_file == NULL) {
cout << "Building global photon map with " << ANSI_BOLD_YELLOW << g_photons / 2 << ANSI_RESET_STYLE << " primary photons per light source." << endl;
//p_tracer->photon_tracing(scn, g_photons / 2);
p_tracer->photon_tracing(scn, g_photons / 2);
cout << "Building caustics photon map with " << ANSI_BOLD_YELLOW << g_photons / 2 << ANSI_RESET_STYLE << " primary photons per light source." << endl;
p_tracer->photon_tracing(scn, g_photons / 2, true);
p_tracer->build_photon_map();
} else {
if (g_photons_file != g_caustics_file) {
cerr << "Must specify both a photon map file and a caustics file." << endl;
return EXIT_FAILURE;
}
p_tracer->build_photon_map(g_photons_file);
p_tracer->build_photon_map(g_caustics_file, true);
}
tracer = static_cast<Tracer *>(p_tracer);
} else {
cerr << "Must specify a ray tracer with \"-t\"." << endl;
print_usage(argv);
@@ -257,7 +263,7 @@ void parse_args(int argc, char ** const argv) {
exit(EXIT_FAILURE);
}
while((opt = getopt(argc, argv, "-:t:s:w:f:o:r:g:e:p:h:k:")) != -1) {
while((opt = getopt(argc, argv, "-:t:s:w:f:o:r:g:e:p:h:k:c:")) != -1) {
switch (opt) {
case 1:
g_input_file = (char *)malloc((strlen(optarg) + 1) * sizeof(char));
@@ -374,6 +380,11 @@ void parse_args(int argc, char ** const argv) {
strcpy(g_photons_file, optarg);
break;
case 'c':
g_caustics_file = (char *)malloc((strlen(optarg) + 1) * sizeof(char));
strcpy(g_caustics_file, optarg);
break;
case ':':
cerr << "Option \"-" << static_cast<char>(optopt) << "\" requires an argument." << endl;
print_usage(argv);

View File

@@ -217,6 +217,7 @@ void PhotonTracer::photon_tracing(Scene * s, const size_t n_photons_per_ligth, c
if (al != NULL) {
l_sample = al->sample_at_surface();
s_normal = al->normal_at_last_sample();
l_sample = l_sample + (BIAS * s_normal);
if (!specular || (specular && spec_figures.size() == 0)) {
// Generate photon from light source in random direction.
@@ -225,39 +226,30 @@ void PhotonTracer::photon_tracing(Scene * s, const size_t n_photons_per_ligth, c
h_sample = normalize(sample_hemisphere(r1, r2));
rotate_sample(h_sample, s_normal);
} else {
// Generate photon from light source in direction of specular reflective objects.
h_sample = spec_figures[p % spec_figures.size()]->sample_at_surface();
h_sample = normalize(h_sample - l_sample);
// Generate photon from light source in the direction of specular reflective objects.
h_sample = normalize(spec_figures[p % spec_figures.size()]->sample_at_surface() - l_sample);
}
// Create the primary photon.
ls = Vec3(l_sample.x, l_sample.y, l_sample.z);
dir = Vec3(h_sample.x, h_sample.y, h_sample.z);
power = (al->m_figure->m_mat->m_emission / static_cast<float>(n_photons_per_ligth));
ph = Photon(ls, dir, power.r, power.g, power.b, 1.0f);
#pragma omp critical
{
m_photon_map.addPhoton(ph);
}
} else if (pl != NULL) {
l_sample = glm::vec3(pl->m_position.x, pl->m_position.y, pl->m_position.z);
if (!specular || (specular && spec_figures.size() == 0)) {
h_sample = normalize(sample_sphere(l_sample, 1.0f) - l_sample);
} else {
// Generate photon from light source in direction of specular reflective objects.
h_sample = spec_figures[p % spec_figures.size()]->sample_at_surface();
h_sample = normalize(h_sample - l_sample);
// Generate photon from light source in the direction of specular reflective objects.
h_sample = normalize(spec_figures[p % spec_figures.size()]->sample_at_surface() - l_sample);
}
ls = Vec3(l_sample.x, l_sample.y, l_sample.z);
dir = Vec3(h_sample.x, h_sample.y, h_sample.z);
power = (pl->m_diffuse / static_cast<float>(n_photons_per_ligth));
ph = Photon(ls, dir, power.r, power.g, power.b, 1.0f);
}
ls = Vec3(l_sample.x, l_sample.y, l_sample.z);
dir = Vec3(h_sample.x, h_sample.y, h_sample.z);
ph = Photon(ls, dir, power.r, power.g, power.b, 1.0f);
trace_photon(ph, s, 0);
#pragma omp atomic
@@ -267,9 +259,12 @@ void PhotonTracer::photon_tracing(Scene * s, const size_t n_photons_per_ligth, c
cout << "\r" << setw(3) << static_cast<size_t>((static_cast<double>(current) / static_cast<double>(total)) * 100.0) << "% done.";
}
cout << endl;
cout << "Generated " << ANSI_BOLD_YELLOW << m_photon_map.getNumPhotons() << ANSI_RESET_STYLE << " total photons." << endl;
m_photon_map.save_photon_list(specular ? "caustics.txt" : "photons.txt");
}
void PhotonTracer::build_photon_map(const char * photons_file) {
void PhotonTracer::build_photon_map(const char * photons_file, const bool caustics) {
Photon ph;
float x, y, z, dx, dy, dz, r, g, b, rc;
ifstream ifs(photons_file, ios::in);
@@ -289,14 +284,15 @@ void PhotonTracer::build_photon_map(const char * photons_file) {
ifs.close();
build_photon_map();
build_photon_map(caustics);
}
void PhotonTracer::build_photon_map() {
cout << "Generated " << ANSI_BOLD_YELLOW << m_photon_map.getNumPhotons() << ANSI_RESET_STYLE << " total photons." << endl;
m_photon_map.save_photon_list();
void PhotonTracer::build_photon_map(const bool caustics) {
cout << "Building photon map Kd-tree." << endl;
m_photon_map.buildKdTree();
if (!caustics)
m_photon_map.buildKdTree();
else
m_caustics_map.buildKdTree();
}
void PhotonTracer::trace_photon(Photon & ph, Scene * s, const unsigned int rec_level) {
@@ -328,6 +324,11 @@ void PhotonTracer::trace_photon(Photon & ph, Scene * s, const unsigned int rec_l
// Store the diffuse photon and trace.
if (!_f->m_mat->m_refract){
#pragma omp critical
{
m_photon_map.addPhoton(ph);
}
r1 = random01();
r2 = random01();
sample = sample_hemisphere(r1, r2);
@@ -338,24 +339,19 @@ void PhotonTracer::trace_photon(Photon & ph, Scene * s, const unsigned int rec_l
p_pos = Vec3(i_pos.x, i_pos.y, i_pos.z);
p_dir = Vec3(sample.x, sample.y, sample.z);
photon = Photon(p_pos, p_dir, color.r, color.g, color.b, ph.ref_index);
#pragma omp critical
{
m_photon_map.addPhoton(photon);
}
if (rec_level < m_max_depth)
trace_photon(photon, s, rec_level + 1);
}
// Trace the reflected photon.
if (!_f->m_mat->m_refract && _f->m_mat->m_rho > 0.0f && rec_level < m_max_depth) {
color = (_f->m_mat->m_rho) * vec3(red, green, blue);
i_pos += n * BIAS;
p_pos = Vec3(i_pos.x, i_pos.y, i_pos.z);
ph_dir = normalize(reflect(vec3(ph.direction.x, ph.direction.y, ph.direction.z), n));
p_dir = Vec3(ph_dir.x, ph_dir.y, ph_dir.z);
photon = Photon(p_pos, p_dir, color.r, color.g, color.b, ph.ref_index);
trace_photon(photon, s, rec_level + 1);
if (_f->m_mat->m_rho > 0.0f && rec_level < m_max_depth) {
color = (_f->m_mat->m_rho) * vec3(red, green, blue);
i_pos += n * BIAS;
p_pos = Vec3(i_pos.x, i_pos.y, i_pos.z);
ph_dir = normalize(reflect(vec3(ph.direction.x, ph.direction.y, ph.direction.z), n));
p_dir = Vec3(ph_dir.x, ph_dir.y, ph_dir.z);
photon = Photon(p_pos, p_dir, color.r, color.g, color.b, ph.ref_index);
trace_photon(photon, s, rec_level + 1);
}
} else if (_f->m_mat->m_refract && rec_level < m_max_depth) {
// If the material has transmission enabled, calculate the Fresnel term.

View File

@@ -14,11 +14,12 @@ public:
virtual vec3 trace_ray(Ray & r, Scene * s, unsigned int rec_level) const;
void photon_tracing(Scene * s, const size_t n_photons_per_ligth = 10000, const bool specular = false);
void build_photon_map(const char * photons_file);
void build_photon_map();
void build_photon_map(const char * photons_file, const bool caustics = false);
void build_photon_map(const bool caustics = false);
private:
float m_h_radius;
kdTree m_photon_map;
kdTree m_caustics_map;
void trace_photon(Photon & ph, Scene * s, const unsigned int rec_level);
};

View File

@@ -70,3 +70,19 @@ void rotate_sample(vec3 & sample, const vec3 & n) {
sample.x * nb.y + sample.y * n.y + sample.z * nt.y,
sample.x * nb.z + sample.y * n.z + sample.z * nt.z);
}
vec3 sample_sphere(const vec3 center, const float radius) {
float theta;
float u, sqrt1muu, x, y, z;
// Sampling formula from Wolfram Mathworld:
// http://mathworld.wolfram.com/SpherePointPicking.html
theta = random01()* (2.0f * pi<float>());
u = (random01() * 2.0f) - 1.0f;
sqrt1muu = glm::sqrt(1.0f - (u * u));
x = radius * sqrt1muu * cos(theta);
y = radius * sqrt1muu * sin(theta);
z = radius * u;
return vec3(vec3(x, y, z) + center);
}

View File

@@ -15,5 +15,6 @@ extern vec2 sample_pixel(int i, int j, float w, float h, float a_ratio, float fo
extern void create_coords_system(const vec3 &n, vec3 &nt, vec3 &nb);
extern vec3 sample_hemisphere(const float r1, float r2);
extern void rotate_sample(vec3 & sample, const vec3 & n);
extern vec3 sample_sphere(const vec3 center, const float radius);
#endif

93
scenes/scene9.json Normal file
View File

@@ -0,0 +1,93 @@
{
"camera": {
"eye": [0.0, 0.0, 1.0],
"look": [0.0, 0.0, -1.0],
"left": [-1.0, 0.0, 0.0]
},
"point_light": {
"position": [0.0, 0.9, -1.0]
},
"sphere": {
"position": [-0.4, -0.75, -0.65],
"radius": 0.25,
"material": {
"diffuse": [1.0, 1.0, 1.0],
"rho": 0.4
}
},
"sphere": {
"position": [-0.75, -0.5, -1.5],
"radius": 0.5,
"material": {
"diffuse": [0.0, 0.0, 0.0],
"rho": 1.0
}
},
"sphere": {
"position": [1.0, -0.5, -1.1],
"radius": 0.5,
"material": {
"diffuse": [1.0, 1.0, 0.0],
"transmissive": true,
"ref_index": 1.33
}
},
"plane": {
"position": [0.0, -1.0, 0.0],
"normal": [0.0, 1.0, 0.0],
"material": {
"diffuse": [1.0, 1.0, 1.0],
"specular": [0.0, 0.0, 0.0]
}
},
"plane": {
"position": [-2.0, 0.0, 0.0],
"normal": [1.0, 0.0, 0.0],
"material": {
"diffuse": [1.0, 0.0, 0.0],
"specular": [0.0, 0.0, 0.0]
}
},
"plane": {
"position": [2.0, 0.0, 0.0],
"normal": [-1.0, 0.0, 0.0],
"material": {
"diffuse": [0.0, 0.0, 1.0],
"specular": [0.0, 0.0, 0.0]
}
},
"plane": {
"position": [0.0, 1.0, 0.0],
"normal": [0.0, -1.0, 0.0],
"material": {
"diffuse": [0.0, 1.0, 1.0],
"specular": [0.0, 0.0, 0.0]
}
},
"plane": {
"position": [0.0, 0.0, -2.0],
"normal": [0.0, 0.0, 1.0],
"material": {
"diffuse": [1.0, 0.0, 1.0],
"specular": [0.0, 0.0, 0.0]
}
},
"plane": {
"position": [0.0, 0.0, 1.1],
"normal": [0.0, 0.0, -1.0],
"material": {
"diffuse": [1.0, 1.0, 0.0],
"specular": [0.0, 0.0, 0.0]
}
}
}

View File

@@ -44,19 +44,7 @@ vec3 Sphere::normal_at_int(Ray & r, float & t) const {
}
vec3 Sphere::sample_at_surface() const {
float theta;
float u, sqrt1muu, x, y, z;
// Sampling formula from Wolfram Mathworld:
// http://mathworld.wolfram.com/SpherePointPicking.html
theta = random01()* (2.0f * pi<float>());
u = (random01() * 2.0f) - 1.0f;
sqrt1muu = glm::sqrt(1.0f - (u * u));
x = m_radius * sqrt1muu * cos(theta);
y = m_radius * sqrt1muu * sin(theta);
z = m_radius * u;
return vec3(x, y, z) + m_center;
return sample_sphere(m_center, m_radius);
}
void Sphere::calculate_inv_area() {