166 lines
5.1 KiB
C++
166 lines
5.1 KiB
C++
#include <iostream>
|
|
#include <limits>
|
|
#include <cstdlib>
|
|
|
|
#include <glm/gtc/constants.hpp>
|
|
|
|
#include "tracer.hpp"
|
|
|
|
#define MAX_RECURSION 3
|
|
#define BIAS 0.000001f
|
|
|
|
using namespace std;
|
|
|
|
using std::numeric_limits;
|
|
using namespace glm;
|
|
|
|
static const vec3 BCKG_COLOR = vec3(0.0f);
|
|
|
|
static inline float random01() {
|
|
return static_cast<float>(rand()) / static_cast<float>(RAND_MAX);
|
|
}
|
|
|
|
static float fresnel(const vec3 & i, const vec3 & n, const float ir1, const float ir2) {
|
|
float cos_t1 = dot(i, n);
|
|
float cos_t2 = dot(normalize(refract(i, n, ir1 / ir2)), n);
|
|
float sin_t2 = (ir1 / ir2) * sqrt(1.0f - (cos_t2 * cos_t2));
|
|
|
|
if (sin_t2 >= 1.0f)
|
|
return 1.0f;
|
|
|
|
float fr_par = ((ir2 * cos_t1) - (ir1 * cos_t2)) / ((ir2 * cos_t1) + (ir1 * cos_t2));
|
|
float fr_per = ((ir1 * cos_t2) - (ir2 * cos_t1)) / ((ir1 * cos_t2) + (ir2 * cos_t1));
|
|
|
|
return ((fr_par * fr_par) + (fr_per * fr_per)) / 2.0f;
|
|
}
|
|
|
|
vec2 Tracer::sample_pixel(int i, int j) const {
|
|
float pxNDC;
|
|
float pyNDC;
|
|
float pxS;
|
|
float pyS;
|
|
pyNDC = (static_cast<float>(i) + random01()) / m_h;
|
|
pyS = (1.0f - (2.0f * pyNDC)) * tan(radians(m_fov / 2));
|
|
pxNDC = (static_cast<float>(j) + random01()) / m_w;
|
|
pxS = (2.0f * pxNDC) - 1.0f;
|
|
pxS *= m_a_ratio * tan(radians(m_fov / 2));
|
|
|
|
return vec2(pxS, pyS);
|
|
}
|
|
|
|
vec3 Tracer::trace_ray(Ray & r, vector<Figure *> & v_figures, vector<Light *> & v_lights, unsigned int rec_level) const {
|
|
float t, _t;
|
|
Figure * _f;
|
|
vec3 n, color, i_pos, ref, sample, dir_diff_color, dir_spec_color, ind_color;
|
|
Ray mv_r, sr, rr;
|
|
bool vis;
|
|
float kr, r1, r2;
|
|
|
|
t = numeric_limits<float>::max();
|
|
_f = NULL;
|
|
|
|
// Find the closest intersecting surface.
|
|
for (size_t f = 0; f < v_figures.size(); f++) {
|
|
if (v_figures[f]->intersect(r, _t) && _t < t) {
|
|
t = _t;
|
|
_f = v_figures[f];
|
|
}
|
|
}
|
|
|
|
// If this ray intersects something:
|
|
if (_f != NULL) {
|
|
// Take the intersection point and the normal of the surface at that point.
|
|
i_pos = r.m_origin + (t * r.m_direction);
|
|
n = _f->normal_at_int(r, t);
|
|
|
|
// Check if the material is not reflective/refractive.
|
|
if( !_f->m_mat.m_refract && _f->m_mat.m_rho == 0.0f) {
|
|
// Calculate the direct lighting.
|
|
for (size_t l = 0; l < v_lights.size(); l++) {
|
|
// For every light source
|
|
vis = true;
|
|
|
|
// Cast a shadow ray to determine visibility.
|
|
sr = Ray(v_lights[l]->direction(i_pos), i_pos + n * BIAS);
|
|
for (size_t f = 0; f < v_figures.size(); f++) {
|
|
if (v_figures[f]->intersect(sr, _t) && _t < v_lights[l]->distance(i_pos)) {
|
|
vis = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Evaluate the shading model accounting for visibility.
|
|
dir_diff_color += (vis ? 1.0f : 0.0f) * v_lights[l]->diffuse(n, r, t, _f->m_mat);
|
|
dir_spec_color += (vis ? 1.0f : 0.0f) * v_lights[l]->specular(n, r, t, _f->m_mat);
|
|
}
|
|
|
|
// If enabled, calculate indirect lighting contribution.
|
|
if (indirect_l && rec_level < MAX_RECURSION) {
|
|
r1 = random01();
|
|
r2 = random01();
|
|
sample = sample_hemisphere(r1, r2);
|
|
rotate_sample(sample, n);
|
|
rr = Ray(normalize(sample), i_pos + (sample * BIAS));
|
|
ind_color += r1 * trace_ray(rr, v_figures, v_lights, rec_level + 1) / (1.0f / (2.0f * pi<float>()));
|
|
}
|
|
|
|
color += ((dir_diff_color + ind_color) * (_f->m_mat.m_diffuse / pi<float>())) + dir_spec_color;
|
|
|
|
} else {
|
|
// If the material has reflection/transmission enabled.
|
|
// Calculate the Fresnel term if the surface is refracting.
|
|
if (_f->m_mat.m_refract)
|
|
kr = fresnel(r.m_direction, n, r.m_ref_index, _f->m_mat.m_ref_index);
|
|
else
|
|
kr = _f->m_mat.m_rho;
|
|
|
|
// Determinte the specular reflection color.
|
|
if (kr > 0.0f && rec_level < MAX_RECURSION) {
|
|
rr = Ray(normalize(reflect(r.m_direction, n)), i_pos + n * BIAS);
|
|
color += _f->m_mat.m_rho * kr * trace_ray(rr, v_figures, v_lights, rec_level + 1);
|
|
} else if (rec_level >= MAX_RECURSION)
|
|
return vec3(0.0f);
|
|
|
|
// Determine the transmission color.
|
|
if (_f->m_mat.m_refract && kr < 1.0f && rec_level < MAX_RECURSION) {
|
|
rr = Ray(normalize(refract(r.m_direction, n, r.m_ref_index / _f->m_mat.m_ref_index)), i_pos - n * BIAS, _f->m_mat.m_ref_index);
|
|
color += (1.0f - _f->m_mat.m_rho) * (1.0f - kr) * trace_ray(rr, v_figures, v_lights, rec_level + 1);
|
|
} else if (rec_level >= MAX_RECURSION)
|
|
return vec3(0.0f);
|
|
|
|
}
|
|
|
|
// Return final color.
|
|
return clamp(color, 0.0f, 1.0f);
|
|
|
|
} else
|
|
return vec3(BCKG_COLOR);
|
|
}
|
|
|
|
/* Helper functions pretty much taken from scratchapixel.com */
|
|
void Tracer::create_coords_system(const vec3 &n, vec3 &nt, vec3 &nb) const {
|
|
if (abs(n.x) > abs(n.y))
|
|
nt = normalize(vec3(n.z, 0.0f, -n.x));
|
|
else
|
|
nt = normalize(vec3(0.0f, -n.z, n.y));
|
|
nb = normalize(cross(n, nt));
|
|
}
|
|
|
|
vec3 Tracer::sample_hemisphere(const float r1, const float r2) const {
|
|
float sin_t = sqrt(1.0f - (r1 * r1));
|
|
float phi = 2 * pi<float>() * r2;
|
|
float x = sin_t * cos(phi);
|
|
float z = sin_t * sin(phi);
|
|
return vec3(x, r1, z);
|
|
}
|
|
|
|
void Tracer::rotate_sample(vec3 & sample, const vec3 & n) const {
|
|
vec3 nt, nb;
|
|
mat3 rot_m;
|
|
|
|
create_coords_system(n, nt, nb);
|
|
sample = vec3(sample.x * nb.x + sample.y * n.x + sample.z * nt.x,
|
|
sample.x * nb.y + sample.y * n.y + sample.z * nt.y,
|
|
sample.x * nb.z + sample.y * n.z + sample.z * nt.z);
|
|
}
|