Files
PhotonMF/tracer.cpp

166 lines
5.1 KiB
C++

#include <iostream>
#include <limits>
#include <cstdlib>
#include <glm/gtc/constants.hpp>
#include "tracer.hpp"
#define MAX_RECURSION 3
#define BIAS 0.000001f
using namespace std;
using std::numeric_limits;
using namespace glm;
static const vec3 BCKG_COLOR = vec3(0.0f);
static inline float random01() {
return static_cast<float>(rand()) / static_cast<float>(RAND_MAX);
}
static float fresnel(const vec3 & i, const vec3 & n, const float ir1, const float ir2) {
float cos_t1 = dot(i, n);
float cos_t2 = dot(normalize(refract(i, n, ir1 / ir2)), n);
float sin_t2 = (ir1 / ir2) * sqrt(1.0f - (cos_t2 * cos_t2));
if (sin_t2 >= 1.0f)
return 1.0f;
float fr_par = ((ir2 * cos_t1) - (ir1 * cos_t2)) / ((ir2 * cos_t1) + (ir1 * cos_t2));
float fr_per = ((ir1 * cos_t2) - (ir2 * cos_t1)) / ((ir1 * cos_t2) + (ir2 * cos_t1));
return ((fr_par * fr_par) + (fr_per * fr_per)) / 2.0f;
}
vec2 Tracer::sample_pixel(int i, int j) const {
float pxNDC;
float pyNDC;
float pxS;
float pyS;
pyNDC = (static_cast<float>(i) + random01()) / m_h;
pyS = (1.0f - (2.0f * pyNDC)) * tan(radians(m_fov / 2));
pxNDC = (static_cast<float>(j) + random01()) / m_w;
pxS = (2.0f * pxNDC) - 1.0f;
pxS *= m_a_ratio * tan(radians(m_fov / 2));
return vec2(pxS, pyS);
}
vec3 Tracer::trace_ray(Ray & r, vector<Figure *> & v_figures, vector<Light *> & v_lights, unsigned int rec_level) const {
float t, _t;
Figure * _f;
vec3 n, color, i_pos, ref, sample, dir_diff_color, dir_spec_color, ind_color;
Ray mv_r, sr, rr;
bool vis;
float kr, r1, r2;
t = numeric_limits<float>::max();
_f = NULL;
// Find the closest intersecting surface.
for (size_t f = 0; f < v_figures.size(); f++) {
if (v_figures[f]->intersect(r, _t) && _t < t) {
t = _t;
_f = v_figures[f];
}
}
// If this ray intersects something:
if (_f != NULL) {
// Take the intersection point and the normal of the surface at that point.
i_pos = r.m_origin + (t * r.m_direction);
n = _f->normal_at_int(r, t);
// Check if the material is not reflective/refractive.
if( !_f->m_mat.m_refract && _f->m_mat.m_rho == 0.0f) {
// Calculate the direct lighting.
for (size_t l = 0; l < v_lights.size(); l++) {
// For every light source
vis = true;
// Cast a shadow ray to determine visibility.
sr = Ray(v_lights[l]->direction(i_pos), i_pos + n * BIAS);
for (size_t f = 0; f < v_figures.size(); f++) {
if (v_figures[f]->intersect(sr, _t) && _t < v_lights[l]->distance(i_pos)) {
vis = false;
break;
}
}
// Evaluate the shading model accounting for visibility.
dir_diff_color += (vis ? 1.0f : 0.0f) * v_lights[l]->diffuse(n, r, t, _f->m_mat);
dir_spec_color += (vis ? 1.0f : 0.0f) * v_lights[l]->specular(n, r, t, _f->m_mat);
}
// If enabled, calculate indirect lighting contribution.
if (indirect_l && rec_level < MAX_RECURSION) {
r1 = random01();
r2 = random01();
sample = sample_hemisphere(r1, r2);
rotate_sample(sample, n);
rr = Ray(normalize(sample), i_pos + (sample * BIAS));
ind_color += r1 * trace_ray(rr, v_figures, v_lights, rec_level + 1) / (1.0f / (2.0f * pi<float>()));
}
color += ((dir_diff_color + ind_color) * (_f->m_mat.m_diffuse / pi<float>())) + dir_spec_color;
} else {
// If the material has reflection/transmission enabled.
// Calculate the Fresnel term if the surface is refracting.
if (_f->m_mat.m_refract)
kr = fresnel(r.m_direction, n, r.m_ref_index, _f->m_mat.m_ref_index);
else
kr = _f->m_mat.m_rho;
// Determinte the specular reflection color.
if (kr > 0.0f && rec_level < MAX_RECURSION) {
rr = Ray(normalize(reflect(r.m_direction, n)), i_pos + n * BIAS);
color += _f->m_mat.m_rho * kr * trace_ray(rr, v_figures, v_lights, rec_level + 1);
} else if (rec_level >= MAX_RECURSION)
return vec3(0.0f);
// Determine the transmission color.
if (_f->m_mat.m_refract && kr < 1.0f && rec_level < MAX_RECURSION) {
rr = Ray(normalize(refract(r.m_direction, n, r.m_ref_index / _f->m_mat.m_ref_index)), i_pos - n * BIAS, _f->m_mat.m_ref_index);
color += (1.0f - _f->m_mat.m_rho) * (1.0f - kr) * trace_ray(rr, v_figures, v_lights, rec_level + 1);
} else if (rec_level >= MAX_RECURSION)
return vec3(0.0f);
}
// Return final color.
return clamp(color, 0.0f, 1.0f);
} else
return vec3(BCKG_COLOR);
}
/* Helper functions pretty much taken from scratchapixel.com */
void Tracer::create_coords_system(const vec3 &n, vec3 &nt, vec3 &nb) const {
if (abs(n.x) > abs(n.y))
nt = normalize(vec3(n.z, 0.0f, -n.x));
else
nt = normalize(vec3(0.0f, -n.z, n.y));
nb = normalize(cross(n, nt));
}
vec3 Tracer::sample_hemisphere(const float r1, const float r2) const {
float sin_t = sqrt(1.0f - (r1 * r1));
float phi = 2 * pi<float>() * r2;
float x = sin_t * cos(phi);
float z = sin_t * sin(phi);
return vec3(x, r1, z);
}
void Tracer::rotate_sample(vec3 & sample, const vec3 & n) const {
vec3 nt, nb;
mat3 rot_m;
create_coords_system(n, nt, nb);
sample = vec3(sample.x * nb.x + sample.y * n.x + sample.z * nt.x,
sample.x * nb.y + sample.y * n.y + sample.z * nt.y,
sample.x * nb.z + sample.y * n.z + sample.z * nt.z);
}