Files
PhotonMF/photonmap.cpp
2017-06-27 10:38:12 -04:00

465 lines
12 KiB
C++

//----------------------------------------------------------------------------
// photonmap.cc
// An example implementation of the photon map data structure
//
// Henrik Wann Jensen - February 2001
//----------------------------------------------------------------------------
#include <stdio.h>
#include <stdlib.h>
#include <alloca.h>
#include <string.h>
#include <math.h>
#include "photonmap.hpp"
#include "rgbe.hpp"
/* This is the constructor for the photon map.
* To create the photon map it is necessary to specify the
* maximum number of photons that will be stored
*/
//************************************************
PhotonMap :: PhotonMap( const int max_phot )
//************************************************
{
stored_photons = 0;
prev_scale = 1;
max_photons = max_phot;
photons = (Photon*)malloc( sizeof( Photon ) * ( max_photons+1 ) );
if (photons == NULL) {
fprintf(stderr,"Out of memory initializing photon map\n");
exit(-1);
}
bbox_min[0] = bbox_min[1] = bbox_min[2] = 1e8f;
bbox_max[0] = bbox_max[1] = bbox_max[2] = -1e8f;
//----------------------------------------
// initialize direction conversion tables
//----------------------------------------
for (int i=0; i<256; i++) {
double angle = double(i)*(1.0/256.0)*M_PI;
costheta[i] = cos( angle );
sintheta[i] = sin( angle );
cosphi[i] = cos( 2.0*angle );
sinphi[i] = sin( 2.0*angle );
}
}
//*************************
PhotonMap :: ~PhotonMap()
//*************************
{
free( photons );
}
/* photon_dir returns the direction of a photon
*/
//*****************************************************************
void PhotonMap :: photon_dir( float *dir, const Photon *p ) const
//*****************************************************************
{
dir[0] = sintheta[p->theta]*cosphi[p->phi];
dir[1] = sintheta[p->theta]*sinphi[p->phi];
dir[2] = costheta[p->theta];
}
/* irradiance_estimate computes an irradiance estimate
* at a given surface position
*/
//**********************************************
void PhotonMap :: irradiance_estimate(
float irrad[3], // returned irradiance
const float pos[3], // surface position
const float normal[3], // surface normal at pos
const float max_dist, // max distance to look for photons
const int nphotons ) const // number of photons to use
//**********************************************
{
irrad[0] = irrad[1] = irrad[2] = 0.0;
NearestPhotons np;
np.dist2 = (float*)alloca( sizeof(float)*(nphotons+1) );
np.index = (const Photon**)alloca( sizeof(Photon*)*(nphotons+1) );
np.pos[0] = pos[0]; np.pos[1] = pos[1]; np.pos[2] = pos[2];
np.max = nphotons;
np.found = 0;
np.got_heap = 0;
np.dist2[0] = max_dist*max_dist;
// locate the nearest photons
locate_photons( &np, 1 );
// if less than 8 photons return
if (np.found<8)
return;
float pdir[3];
// sum irradiance from all photons
for (int i=1; i<=np.found; i++) {
const Photon *p = np.index[i];
// the photon_dir call and following if can be omitted (for speed)
// if the scene does not have any thin surfaces
photon_dir( pdir, p );
if ( (pdir[0]*normal[0]+pdir[1]*normal[1]+pdir[2]*normal[2]) < 0.0f ) {
float red, green, blue;
rgbe2float(red, green, blue, p->power);
irrad[0] += red;
irrad[1] += green;
irrad[2] += blue;
}
}
const float tmp=(1.0f/M_PI)/(np.dist2[0]); // estimate of density
irrad[0] *= tmp;
irrad[1] *= tmp;
irrad[2] *= tmp;
}
/* locate_photons finds the nearest photons in the
* photon map given the parameters in np
*/
//******************************************
void PhotonMap :: locate_photons(
NearestPhotons *const np,
const int index ) const
//******************************************
{
const Photon *p = &photons[index];
float dist1;
if (index<half_stored_photons) {
dist1 = np->pos[ p->plane ] - p->pos[ p->plane ];
if (dist1>0.0) { // if dist1 is positive search right plane
locate_photons( np, 2*index+1 );
if ( dist1*dist1 < np->dist2[0] )
locate_photons( np, 2*index );
} else { // dist1 is negative search left first
locate_photons( np, 2*index );
if ( dist1*dist1 < np->dist2[0] )
locate_photons( np, 2*index+1 );
}
}
// compute squared distance between current photon and np->pos
dist1 = p->pos[0] - np->pos[0];
float dist2 = dist1*dist1;
dist1 = p->pos[1] - np->pos[1];
dist2 += dist1*dist1;
dist1 = p->pos[2] - np->pos[2];
dist2 += dist1*dist1;
if ( dist2 < np->dist2[0] ) {
// we found a photon :) Insert it in the candidate list
if ( np->found < np->max ) {
// heap is not full; use array
np->found++;
np->dist2[np->found] = dist2;
np->index[np->found] = p;
} else {
int j,parent;
if (np->got_heap==0) { // Do we need to build the heap?
// Build heap
float dst2;
const Photon *phot;
int half_found = np->found>>1;
for ( int k=half_found; k>=1; k--) {
parent=k;
phot = np->index[k];
dst2 = np->dist2[k];
while ( parent <= half_found ) {
j = parent+parent;
if (j<np->found && np->dist2[j]<np->dist2[j+1])
j++;
if (dst2>=np->dist2[j])
break;
np->dist2[parent] = np->dist2[j];
np->index[parent] = np->index[j];
parent=j;
}
np->dist2[parent] = dst2;
np->index[parent] = phot;
}
np->got_heap = 1;
}
// insert new photon into max heap
// delete largest element, insert new and reorder the heap
parent=1;
j = 2;
while ( j <= np->found ) {
if ( j < np->found && np->dist2[j] < np->dist2[j+1] )
j++;
if ( dist2 > np->dist2[j] )
break;
np->dist2[parent] = np->dist2[j];
np->index[parent] = np->index[j];
parent = j;
j += j;
}
np->index[parent] = p;
np->dist2[parent] = dist2;
np->dist2[0] = np->dist2[1];
}
}
}
/* store puts a photon into the flat array that will form
* the final kd-tree.
*
* Call this function to store a photon.
*/
//***************************
void PhotonMap :: store(
const float power[3],
const float pos[3],
const float dir[3],
const float ref_index)
//***************************
{
if (stored_photons>=max_photons)
return;
stored_photons++;
Photon *const node = &photons[stored_photons];
node->ref_index = ref_index;
for (int i=0; i<3; i++) {
node->pos[i] = pos[i];
if (node->pos[i] < bbox_min[i])
bbox_min[i] = node->pos[i];
if (node->pos[i] > bbox_max[i])
bbox_max[i] = node->pos[i];
//node->power[i] = power[i];
}
float2rgbe(node->power, power[0], power[1], power[2]);
int theta = int( acos(dir[2])*(256.0/M_PI) );
if (theta>255)
node->theta = 255;
else
node->theta = (unsigned char)theta;
int phi = int( atan2(dir[1],dir[0])*(256.0/(2.0*M_PI)) );
if (phi>255)
node->phi = 255;
else if (phi<0)
node->phi = (unsigned char)(phi+256);
else
node->phi = (unsigned char)phi;
}
/* scale_photon_power is used to scale the power of all
* photons once they have been emitted from the light
* source. scale = 1/(#emitted photons).
* Call this function after each light source is processed.
*/
//********************************************************
void PhotonMap :: scale_photon_power( const float scale )
//********************************************************
{
for (int i=prev_scale; i<=stored_photons; i++) {
float red, green, blue;
rgbe2float(red, green, blue, photons[i].power);
red *= scale;
green *= scale;
blue *= scale;
float2rgbe(photons[i].power, red, green, blue);
}
prev_scale = stored_photons;
}
/* balance creates a left balanced kd-tree from the flat photon array.
* This function should be called before the photon map
* is used for rendering.
*/
//******************************
void PhotonMap :: balance(void)
//******************************
{
if (stored_photons>1) {
// allocate two temporary arrays for the balancing procedure
Photon **pa1 = (Photon**)malloc(sizeof(Photon*)*(stored_photons+1));
Photon **pa2 = (Photon**)malloc(sizeof(Photon*)*(stored_photons+1));
for (int i=0; i<=stored_photons; i++)
pa2[i] = &photons[i];
balance_segment( pa1, pa2, 1, 1, stored_photons );
free(pa2);
// reorganize balanced kd-tree (make a heap)
int d, j=1, foo=1;
Photon foo_photon = photons[j];
for (int i=1; i<=stored_photons; i++) {
d=pa1[j]-photons;
pa1[j] = NULL;
if (d != foo)
photons[j] = photons[d];
else {
photons[j] = foo_photon;
if (i<stored_photons) {
for (;foo<=stored_photons; foo++)
if (pa1[foo] != NULL)
break;
foo_photon = photons[foo];
j = foo;
}
continue;
}
j = d;
}
free(pa1);
}
half_stored_photons = stored_photons/2-1;
}
#define swap(ph,a,b) { Photon *ph2=ph[a]; ph[a]=ph[b]; ph[b]=ph2; }
// median_split splits the photon array into two separate
// pieces around the median with all photons below the
// the median in the lower half and all photons above
// than the median in the upper half. The comparison
// criteria is the axis (indicated by the axis parameter)
// (inspired by routine in "Algorithms in C++" by Sedgewick)
//*****************************************************************
void PhotonMap :: median_split(
Photon **p,
const int start, // start of photon block in array
const int end, // end of photon block in array
const int median, // desired median number
const int axis ) // axis to split along
//*****************************************************************
{
int left = start;
int right = end;
while ( right > left ) {
const float v = p[right]->pos[axis];
int i=left-1;
int j=right;
for (;;) {
while ( p[++i]->pos[axis] < v )
;
while ( p[--j]->pos[axis] > v && j>left )
;
if ( i >= j )
break;
swap(p,i,j);
}
swap(p,i,right);
if ( i >= median )
right=i-1;
if ( i <= median )
left=i+1;
}
}
// See "Realistic image synthesis using Photon Mapping" chapter 6
// for an explanation of this function
//****************************
void PhotonMap :: balance_segment(
Photon **pbal,
Photon **porg,
const int index,
const int start,
const int end )
//****************************
{
//--------------------
// compute new median
//--------------------
int median=1;
while ((4*median) <= (end-start+1))
median += median;
if ((3*median) <= (end-start+1)) {
median += median;
median += start-1;
} else
median = end-median+1;
//--------------------------
// find axis to split along
//--------------------------
int axis=2;
if ((bbox_max[0]-bbox_min[0])>(bbox_max[1]-bbox_min[1]) &&
(bbox_max[0]-bbox_min[0])>(bbox_max[2]-bbox_min[2]))
axis=0;
else if ((bbox_max[1]-bbox_min[1])>(bbox_max[2]-bbox_min[2]))
axis=1;
//------------------------------------------
// partition photon block around the median
//------------------------------------------
median_split( porg, start, end, median, axis );
pbal[ index ] = porg[ median ];
pbal[ index ]->plane = axis;
//----------------------------------------------
// recursively balance the left and right block
//----------------------------------------------
if ( median > start ) {
// balance left segment
if ( start < median-1 ) {
const float tmp=bbox_max[axis];
bbox_max[axis] = pbal[index]->pos[axis];
balance_segment( pbal, porg, 2*index, start, median-1 );
bbox_max[axis] = tmp;
} else {
pbal[ 2*index ] = porg[start];
}
}
if ( median < end ) {
// balance right segment
if ( median+1 < end ) {
const float tmp = bbox_min[axis];
bbox_min[axis] = pbal[index]->pos[axis];
balance_segment( pbal, porg, 2*index+1, median+1, end );
bbox_min[axis] = tmp;
} else {
pbal[ 2*index+1 ] = porg[end];
}
}
}