23 Commits

Author SHA1 Message Date
1a2017a65f Merge branch 'develop' 2014-05-15 12:14:03 -04:30
67c4c99cc5 Fixed rotation matrix. Added camera parameters getter methods. 2014-05-15 12:13:43 -04:30
2e176aae47 Transposed the output rotation matrix. 2014-05-14 16:57:36 -04:30
b0151e85e9 Added marker pose estimation. Not tested yet. 2014-05-13 18:30:32 -04:30
ea33f1e725 Added specular color and geometric transformations. 2014-05-12 11:36:55 -04:30
8d13493c2a Moved the diffuse color calculation to the vertex shader. 2014-05-09 10:47:42 -04:30
caa0631004 Single light textureless phong shading complete. 2014-05-08 16:22:11 -04:30
51183a2cf1 Added vertex attributes. 2014-05-07 16:42:14 -04:30
e5b9bd681b Added more comments. 2014-05-06 18:28:18 -04:30
31dd89f30e Assorted edits. Created new shaders. 2014-05-06 16:36:46 -04:30
f04c5806d1 Added intradocumentation. 2014-05-05 12:32:50 -04:30
a3431937d0 Camera calibration sucessfully ported. 2014-05-02 13:59:58 -04:30
729b21400c Fixed some initialization bugs. 2014-05-02 11:15:51 -04:30
c29f36a997 Added c/c++ builder and finished calibration jni calls. 2014-04-30 16:19:59 -04:30
784b14c9e9 Implemented the calibration interface. 2014-04-30 13:05:36 -04:30
b3d678f078 Ported camera calibration code. 2014-04-28 10:42:38 -04:30
249e6e30a4 Started porting the camera calibration functions. 2014-04-10 17:55:31 -04:30
453c3a36e5 Added the camera calibration pattern detection. 2014-04-09 14:56:00 -04:30
5c92d603d2 Changed OpenCV to load statically. 2014-04-05 15:03:53 -04:30
daaace0d3f Merge branch 'develop' 2014-04-04 10:29:28 -04:30
00038f1622 Changed version number. 2014-04-04 10:29:05 -04:30
72eb8d2731 Added a readme file. 2014-03-31 11:03:20 -04:30
36e34d3b2f Source formatting. 2014-03-18 18:04:38 -04:30
13 changed files with 1391 additions and 442 deletions

80
.cproject Normal file
View File

@@ -0,0 +1,80 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<?fileVersion 4.0.0?><cproject storage_type_id="org.eclipse.cdt.core.XmlProjectDescriptionStorage">
<storageModule moduleId="org.eclipse.cdt.core.settings">
<cconfiguration id="0.1353761552">
<storageModule buildSystemId="org.eclipse.cdt.managedbuilder.core.configurationDataProvider" id="0.1353761552" moduleId="org.eclipse.cdt.core.settings" name="Default">
<externalSettings/>
<extensions>
<extension id="org.eclipse.cdt.core.VCErrorParser" point="org.eclipse.cdt.core.ErrorParser"/>
<extension id="org.eclipse.cdt.core.GmakeErrorParser" point="org.eclipse.cdt.core.ErrorParser"/>
<extension id="org.eclipse.cdt.core.CWDLocator" point="org.eclipse.cdt.core.ErrorParser"/>
<extension id="org.eclipse.cdt.core.GCCErrorParser" point="org.eclipse.cdt.core.ErrorParser"/>
<extension id="org.eclipse.cdt.core.GASErrorParser" point="org.eclipse.cdt.core.ErrorParser"/>
<extension id="org.eclipse.cdt.core.GLDErrorParser" point="org.eclipse.cdt.core.ErrorParser"/>
</extensions>
</storageModule>
<storageModule moduleId="cdtBuildSystem" version="4.0.0">
<configuration artifactName="${ProjName}" buildProperties="" description="" id="0.1353761552" name="Default" parent="org.eclipse.cdt.build.core.prefbase.cfg">
<folderInfo id="0.1353761552." name="/" resourcePath="">
<toolChain id="org.eclipse.cdt.build.core.prefbase.toolchain.1359385240" name="No ToolChain" resourceTypeBasedDiscovery="false" superClass="org.eclipse.cdt.build.core.prefbase.toolchain">
<targetPlatform id="org.eclipse.cdt.build.core.prefbase.toolchain.1359385240.2064614940" name=""/>
<builder command="${NDKROOT}/ndk-build.cmd" enableAutoBuild="true" enableCleanBuild="true" id="org.eclipse.cdt.build.core.settings.default.builder.1504609501" keepEnvironmentInBuildfile="false" managedBuildOn="false" name="Gnu Make Builder" superClass="org.eclipse.cdt.build.core.settings.default.builder">
<outputEntries>
<entry flags="VALUE_WORKSPACE_PATH|RESOLVED" kind="outputPath" name=""/>
</outputEntries>
</builder>
<tool id="org.eclipse.cdt.build.core.settings.holder.libs.979977589" name="holder for library settings" superClass="org.eclipse.cdt.build.core.settings.holder.libs"/>
<tool id="org.eclipse.cdt.build.core.settings.holder.743530782" name="Assembly" superClass="org.eclipse.cdt.build.core.settings.holder">
<option id="org.eclipse.cdt.build.core.settings.holder.incpaths.1231978083" name="Include Paths" superClass="org.eclipse.cdt.build.core.settings.holder.incpaths" valueType="includePath">
<listOptionValue builtIn="false" value="&quot;${NDKROOT}\platforms\android-9\arch-arm\usr\include&quot;"/>
<listOptionValue builtIn="false" value="&quot;${NDKROOT}\sources\cxx-stl\gnu-libstdc++\4.6\include&quot;"/>
<listOptionValue builtIn="false" value="&quot;${NDKROOT}\sources\cxx-stl\gnu-libstdc++\4.6\libs\armeabi-v7a\include&quot;"/>
<listOptionValue builtIn="false" value="&quot;C:\Users\miguel.astor\Documents\OpenCV-2.4.8-android-sdk\sdk\native\jni\include&quot;"/>
<listOptionValue builtIn="false" value="&quot;../${NDKROOT]\toolchains\arm-linux-androideabi-4.8\prebuilt\windows\lib\gcc\arm-linux-androideabi\4.8\include&quot;"/>
</option>
<inputType id="org.eclipse.cdt.build.core.settings.holder.inType.1450614296" languageId="org.eclipse.cdt.core.assembly" languageName="Assembly" sourceContentType="org.eclipse.cdt.core.asmSource" superClass="org.eclipse.cdt.build.core.settings.holder.inType"/>
</tool>
<tool id="org.eclipse.cdt.build.core.settings.holder.2086329912" name="GNU C++" superClass="org.eclipse.cdt.build.core.settings.holder">
<option id="org.eclipse.cdt.build.core.settings.holder.incpaths.915443128" name="Include Paths" superClass="org.eclipse.cdt.build.core.settings.holder.incpaths" valueType="includePath">
<listOptionValue builtIn="false" value="&quot;${NDKROOT}\platforms\android-9\arch-arm\usr\include&quot;"/>
<listOptionValue builtIn="false" value="&quot;${NDKROOT}\sources\cxx-stl\gnu-libstdc++\4.6\include&quot;"/>
<listOptionValue builtIn="false" value="&quot;${NDKROOT}\sources\cxx-stl\gnu-libstdc++\4.6\libs\armeabi-v7a\include&quot;"/>
<listOptionValue builtIn="false" value="&quot;C:\Users\miguel.astor\Documents\OpenCV-2.4.8-android-sdk\sdk\native\jni\include&quot;"/>
<listOptionValue builtIn="false" value="&quot;C:\android-ndk-r9c\toolchains\arm-linux-androideabi-4.8\prebuilt\windows\lib\gcc\arm-linux-androideabi\4.8\include&quot;"/>
</option>
<inputType id="org.eclipse.cdt.build.core.settings.holder.inType.1750170923" languageId="org.eclipse.cdt.core.g++" languageName="GNU C++" sourceContentType="org.eclipse.cdt.core.cxxSource,org.eclipse.cdt.core.cxxHeader" superClass="org.eclipse.cdt.build.core.settings.holder.inType"/>
</tool>
<tool id="org.eclipse.cdt.build.core.settings.holder.1705205854" name="GNU C" superClass="org.eclipse.cdt.build.core.settings.holder">
<option id="org.eclipse.cdt.build.core.settings.holder.incpaths.1859743695" name="Include Paths" superClass="org.eclipse.cdt.build.core.settings.holder.incpaths" valueType="includePath">
<listOptionValue builtIn="false" value="&quot;${NDKROOT}\platforms\android-9\arch-arm\usr\include&quot;"/>
<listOptionValue builtIn="false" value="&quot;${NDKROOT}\sources\cxx-stl\gnu-libstdc++\4.6\include&quot;"/>
<listOptionValue builtIn="false" value="&quot;${NDKROOT}\sources\cxx-stl\gnu-libstdc++\4.6\libs\armeabi-v7a\include&quot;"/>
<listOptionValue builtIn="false" value="&quot;C:\Users\miguel.astor\Documents\OpenCV-2.4.8-android-sdk\sdk\native\jni\include&quot;"/>
<listOptionValue builtIn="false" value="&quot;../${NDKROOT]\toolchains\arm-linux-androideabi-4.8\prebuilt\windows\lib\gcc\arm-linux-androideabi\4.8\include&quot;"/>
</option>
<inputType id="org.eclipse.cdt.build.core.settings.holder.inType.343342792" languageId="org.eclipse.cdt.core.gcc" languageName="GNU C" sourceContentType="org.eclipse.cdt.core.cSource,org.eclipse.cdt.core.cHeader" superClass="org.eclipse.cdt.build.core.settings.holder.inType"/>
</tool>
</toolChain>
</folderInfo>
</configuration>
</storageModule>
<storageModule moduleId="org.eclipse.cdt.core.externalSettings"/>
</cconfiguration>
</storageModule>
<storageModule moduleId="cdtBuildSystem" version="4.0.0">
<project id="NxtAR-android.null.1875632970" name="NxtAR-android"/>
</storageModule>
<storageModule moduleId="scannerConfiguration">
<autodiscovery enabled="true" problemReportingEnabled="true" selectedProfileId=""/>
<scannerConfigBuildInfo instanceId="0.1353761552">
<autodiscovery enabled="true" problemReportingEnabled="true" selectedProfileId=""/>
</scannerConfigBuildInfo>
</storageModule>
<storageModule moduleId="org.eclipse.cdt.core.pathentry"/>
<storageModule moduleId="org.eclipse.cdt.core.LanguageSettingsProviders"/>
<storageModule moduleId="refreshScope" versionNumber="2">
<configuration configurationName="Default">
<resource resourceType="PROJECT" workspacePath="/NxtAR-android"/>
</configuration>
</storageModule>
</cproject>

View File

@@ -0,0 +1,67 @@
eclipse.preferences.version=1
org.eclipse.cdt.codan.checkers.errnoreturn=Warning
org.eclipse.cdt.codan.checkers.errnoreturn.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},implicit\=>false}
org.eclipse.cdt.codan.checkers.errreturnvalue=Error
org.eclipse.cdt.codan.checkers.errreturnvalue.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true}}
org.eclipse.cdt.codan.checkers.noreturn=Error
org.eclipse.cdt.codan.checkers.noreturn.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},implicit\=>false}
org.eclipse.cdt.codan.internal.checkers.AbstractClassCreation=Error
org.eclipse.cdt.codan.internal.checkers.AbstractClassCreation.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true}}
org.eclipse.cdt.codan.internal.checkers.AmbiguousProblem=Error
org.eclipse.cdt.codan.internal.checkers.AmbiguousProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true}}
org.eclipse.cdt.codan.internal.checkers.AssignmentInConditionProblem=Warning
org.eclipse.cdt.codan.internal.checkers.AssignmentInConditionProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true}}
org.eclipse.cdt.codan.internal.checkers.AssignmentToItselfProblem=Error
org.eclipse.cdt.codan.internal.checkers.AssignmentToItselfProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true}}
org.eclipse.cdt.codan.internal.checkers.CaseBreakProblem=Warning
org.eclipse.cdt.codan.internal.checkers.CaseBreakProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},no_break_comment\=>"no break",last_case_param\=>false,empty_case_param\=>false}
org.eclipse.cdt.codan.internal.checkers.CatchByReference=Warning
org.eclipse.cdt.codan.internal.checkers.CatchByReference.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},unknown\=>false,exceptions\=>()}
org.eclipse.cdt.codan.internal.checkers.CircularReferenceProblem=Error
org.eclipse.cdt.codan.internal.checkers.CircularReferenceProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true}}
org.eclipse.cdt.codan.internal.checkers.ClassMembersInitialization=Warning
org.eclipse.cdt.codan.internal.checkers.ClassMembersInitialization.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},skip\=>true}
org.eclipse.cdt.codan.internal.checkers.FieldResolutionProblem=Error
org.eclipse.cdt.codan.internal.checkers.FieldResolutionProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true}}
org.eclipse.cdt.codan.internal.checkers.FunctionResolutionProblem=Error
org.eclipse.cdt.codan.internal.checkers.FunctionResolutionProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true}}
org.eclipse.cdt.codan.internal.checkers.InvalidArguments=Error
org.eclipse.cdt.codan.internal.checkers.InvalidArguments.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true}}
org.eclipse.cdt.codan.internal.checkers.InvalidTemplateArgumentsProblem=Error
org.eclipse.cdt.codan.internal.checkers.InvalidTemplateArgumentsProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true}}
org.eclipse.cdt.codan.internal.checkers.LabelStatementNotFoundProblem=Error
org.eclipse.cdt.codan.internal.checkers.LabelStatementNotFoundProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true}}
org.eclipse.cdt.codan.internal.checkers.MemberDeclarationNotFoundProblem=Error
org.eclipse.cdt.codan.internal.checkers.MemberDeclarationNotFoundProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true}}
org.eclipse.cdt.codan.internal.checkers.MethodResolutionProblem=Error
org.eclipse.cdt.codan.internal.checkers.MethodResolutionProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true}}
org.eclipse.cdt.codan.internal.checkers.NamingConventionFunctionChecker=-Info
org.eclipse.cdt.codan.internal.checkers.NamingConventionFunctionChecker.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},pattern\=>"^[a-z]",macro\=>true,exceptions\=>()}
org.eclipse.cdt.codan.internal.checkers.NonVirtualDestructorProblem=Warning
org.eclipse.cdt.codan.internal.checkers.NonVirtualDestructorProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true}}
org.eclipse.cdt.codan.internal.checkers.OverloadProblem=Error
org.eclipse.cdt.codan.internal.checkers.OverloadProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true}}
org.eclipse.cdt.codan.internal.checkers.RedeclarationProblem=Error
org.eclipse.cdt.codan.internal.checkers.RedeclarationProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true}}
org.eclipse.cdt.codan.internal.checkers.RedefinitionProblem=Error
org.eclipse.cdt.codan.internal.checkers.RedefinitionProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true}}
org.eclipse.cdt.codan.internal.checkers.ReturnStyleProblem=-Warning
org.eclipse.cdt.codan.internal.checkers.ReturnStyleProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true}}
org.eclipse.cdt.codan.internal.checkers.ScanfFormatStringSecurityProblem=-Warning
org.eclipse.cdt.codan.internal.checkers.ScanfFormatStringSecurityProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true}}
org.eclipse.cdt.codan.internal.checkers.StatementHasNoEffectProblem=Warning
org.eclipse.cdt.codan.internal.checkers.StatementHasNoEffectProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},macro\=>true,exceptions\=>()}
org.eclipse.cdt.codan.internal.checkers.SuggestedParenthesisProblem=Warning
org.eclipse.cdt.codan.internal.checkers.SuggestedParenthesisProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},paramNot\=>false}
org.eclipse.cdt.codan.internal.checkers.SuspiciousSemicolonProblem=Warning
org.eclipse.cdt.codan.internal.checkers.SuspiciousSemicolonProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},else\=>false,afterelse\=>false}
org.eclipse.cdt.codan.internal.checkers.TypeResolutionProblem=Error
org.eclipse.cdt.codan.internal.checkers.TypeResolutionProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true}}
org.eclipse.cdt.codan.internal.checkers.UnusedFunctionDeclarationProblem=Warning
org.eclipse.cdt.codan.internal.checkers.UnusedFunctionDeclarationProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},macro\=>true}
org.eclipse.cdt.codan.internal.checkers.UnusedStaticFunctionProblem=Warning
org.eclipse.cdt.codan.internal.checkers.UnusedStaticFunctionProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},macro\=>true}
org.eclipse.cdt.codan.internal.checkers.UnusedVariableDeclarationProblem=Warning
org.eclipse.cdt.codan.internal.checkers.UnusedVariableDeclarationProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true},macro\=>true,exceptions\=>("@(\#)","$Id")}
org.eclipse.cdt.codan.internal.checkers.VariableResolutionProblem=Error
org.eclipse.cdt.codan.internal.checkers.VariableResolutionProblem.params={launchModes\=>{RUN_ON_FULL_BUILD\=>true,RUN_ON_INC_BUILD\=>true,RUN_ON_FILE_OPEN\=>false,RUN_ON_FILE_SAVE\=>false,RUN_AS_YOU_TYPE\=>true,RUN_ON_DEMAND\=>true}}

View File

@@ -17,8 +17,8 @@
<!-- android:screenOrientation="portrait" -->
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="ve.ucv.ciens.ccg.nxtar"
android:versionCode="1"
android:versionName="1.0" >
android:versionCode="140404"
android:versionName="14.04.04" >
<uses-sdk android:minSdkVersion="12" android:targetSdkVersion="19" />

4
README.md Normal file
View File

@@ -0,0 +1,4 @@
NxtAR-android
=============
Modulo 2 de mi trabajo especial de grado.

View File

@@ -0,0 +1,60 @@
/*
* Copyright (C) 2014 Miguel Angel Astor Romero
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifdef GL_ES
precision mediump float;
#endif
// Ambient light color.
uniform vec4 u_ambient;
// Specular light color.
uniform vec4 u_specular;
// Shininess.
uniform float u_shiny;
// Fragment position.
varying vec4 v_position;
// Fragment normal.
varying vec3 v_normal;
// Fragment color received from the vertex shader.
varying vec4 v_color;
// Fragment shaded diffuse color.
varying vec4 v_diffuse;
varying vec3 v_lightVector;
varying vec3 v_eyeVector;
varying vec3 v_reflectedVector;
void main(){
// Normalize the input varyings.
vec3 lightVector = normalize(v_lightVector);
vec3 eyeVector = normalize(v_eyeVector);
vec3 reflectedVector = normalize(v_reflectedVector);
// Specular Term:
vec4 specular = u_specular * pow(max(dot(reflectedVector, eyeVector), 0.0), 0.3 * u_shiny);
// Aggregate light color.
vec4 lightColor = clamp(vec4(u_ambient.rgb + v_diffuse.rgb + specular.rgb, 1.0), 0.0, 1.0);
// Final color.
gl_FragColor = clamp(lightColor * v_color, 0.0, 1.0);
}

View File

@@ -0,0 +1,70 @@
/*
* Copyright (C) 2014 Miguel Angel Astor Romero
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Model-view matrix.
uniform mat4 u_projTrans;
// The world space geometric transformation to apply to this vertex.
uniform mat4 u_geomTrans;
// Light source position
uniform vec4 u_lightPos;
// Diffuse light color.
uniform vec4 u_lightDiffuse;
// Camera world space position.
uniform vec3 u_cameraPos;
// Vertex position in world coordinates.
attribute vec4 a_position;
// Vertex normal.
attribute vec4 a_normal;
// Vertex color.
attribute vec4 a_color;
// Vertex color to pass to the fragment shader.
varying vec4 v_color;
// Diffuse shaded color to pass to the fragment shader.
varying vec4 v_diffuse;
// The vector from the vertex to the light source.
varying vec3 v_lightVector;
// The vector from the vertex to the camera.
varying vec3 v_eyeVector;
// The light vector reflected around the vertex normal.
varying vec3 v_reflectedVector;
void main(){
// Apply the geometric transformation to the original position of the vertex.
vec4 transformedPosition = u_geomTrans * a_position;
// Set the varyings.
v_lightVector = normalize(u_lightPos.xyz - transformedPosition.xyz);
v_eyeVector = normalize(u_cameraPos.xyz - transformedPosition.xyz);
v_reflectedVector = normalize(-reflect(v_lightVector, a_normal.xyz));
v_color = a_color;
// Diffuse Term.
v_diffuse = u_lightDiffuse * max(dot(a_normal.xyz, v_lightVector), 0.0);
gl_Position = u_projTrans * transformedPosition;
}

View File

@@ -3,8 +3,9 @@ LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
OPENCV_CAMERA_MODULES:=off
OPENCV_LIB_TYPE:=STATIC
OPENCV_LIB_TYPE:=STATIC #SHARED
include C:\Users\miguel.astor\Documents\OpenCV-2.4.8-android-sdk\sdk\native\jni\OpenCV.mk
#include C:\NVPACK\OpenCV-2.4.5-Tegra-sdk-r2\sdk\native\jni\OpenCV-tegra3.mk
LOCAL_MODULE := cvproc
LOCAL_SRC_FILES := cv_proc.cpp marker.cpp
@@ -26,3 +27,66 @@ LOCAL_MODULE := gdx-freetype
LOCAL_SRC_FILES := $(TARGET_ARCH_ABI)/libgdx-freetype.so
include $(PREBUILT_SHARED_LIBRARY)
include $(CLEAR_VARS)
LOCAL_MODULE := ocv_tegra_java
LOCAL_SRC_FILES := C:\NVPACK\OpenCV-2.4.5-Tegra-sdk-r2\sdk\native\libs\tegra3\libopencv_java.so
include $(PREBUILT_SHARED_LIBRARY)
include $(CLEAR_VARS)
LOCAL_MODULE := ocv_tegra_info
LOCAL_SRC_FILES := C:\NVPACK\OpenCV-2.4.5-Tegra-sdk-r2\sdk\native\libs\tegra3\libopencv_info.so
include $(PREBUILT_SHARED_LIBRARY)
include $(CLEAR_VARS)
LOCAL_MODULE := ocv_tegra_native_camera_220
LOCAL_SRC_FILES := C:\NVPACK\OpenCV-2.4.5-Tegra-sdk-r2\sdk\native\libs\tegra3\libnative_camera_r2.2.0.so
include $(PREBUILT_SHARED_LIBRARY)
include $(CLEAR_VARS)
LOCAL_MODULE := ocv_tegra_native_camera_233
LOCAL_SRC_FILES := C:\NVPACK\OpenCV-2.4.5-Tegra-sdk-r2\sdk\native\libs\tegra3\libnative_camera_r2.3.3.so
include $(PREBUILT_SHARED_LIBRARY)
include $(CLEAR_VARS)
LOCAL_MODULE := ocv_tegra_native_camera_301
LOCAL_SRC_FILES := C:\NVPACK\OpenCV-2.4.5-Tegra-sdk-r2\sdk\native\libs\tegra3\libnative_camera_r3.0.1.so
include $(PREBUILT_SHARED_LIBRARY)
include $(CLEAR_VARS)
LOCAL_MODULE := ocv_tegra_native_camera_400
LOCAL_SRC_FILES := C:\NVPACK\OpenCV-2.4.5-Tegra-sdk-r2\sdk\native\libs\tegra3\libnative_camera_r4.0.0.so
include $(PREBUILT_SHARED_LIBRARY)
include $(CLEAR_VARS)
LOCAL_MODULE := ocv_tegra_native_camera_403
LOCAL_SRC_FILES := C:\NVPACK\OpenCV-2.4.5-Tegra-sdk-r2\sdk\native\libs\tegra3\libnative_camera_r4.0.3.so
include $(PREBUILT_SHARED_LIBRARY)
include $(CLEAR_VARS)
LOCAL_MODULE := ocv_tegra_native_camera_411
LOCAL_SRC_FILES := C:\NVPACK\OpenCV-2.4.5-Tegra-sdk-r2\sdk\native\libs\tegra3\libnative_camera_r4.1.1.so
include $(PREBUILT_SHARED_LIBRARY)
include $(CLEAR_VARS)
LOCAL_MODULE := ocv_tegra_native_camera_420
LOCAL_SRC_FILES := C:\NVPACK\OpenCV-2.4.5-Tegra-sdk-r2\sdk\native\libs\tegra3\libnative_camera_r4.2.0.so
include $(PREBUILT_SHARED_LIBRARY)

View File

@@ -16,56 +16,171 @@
#include <jni.h>
#include <android/log.h>
#include <stdio.h>
#include <stddef.h>
#include "marker.hpp"
//#define CAN_LOG
extern "C"{
#ifdef CAN_LOG
//#define LOG_ENABLED
#define MAX_MARKERS 5
#define TRANSLATION_VECTOR_POINTS 3
#define ROTATION_MATRIX_SIZE 9
#define POINTS_PER_CALIBRATION_SAMPLE 54
#define CALIBRATION_SAMPLES 10
#ifdef LOG_ENABLED
#define log(TAG, MSG) (__android_log_write(ANDROID_LOG_DEBUG, TAG, MSG))
#else
#define log(TAG, MSG) ;
#endif
const char * TAG = "CVPROC_NATIVE";
#else
extern "C"{
#define log(TAG, MSG) (1 + 1)
/**
* JNI wrapper around the nxtar::getAllMarkers() method.
*/
JNIEXPORT void JNICALL Java_ve_ucv_ciens_ccg_nxtar_MainActivity_getMarkerCodesAndLocations(JNIEnv* env, jobject jobj, jlong addrMatIn, jlong addrMatOut, jintArray codes, jlong camMat, jlong distMat, jfloatArray translations, jfloatArray rotations){
char codeMsg[128];
std::vector<int> vCodes;
nxtar::markers_vector vMarkers;
cv::Mat temp;
#endif
// Get the native object addresses.
log(TAG, "getMarkerCodesAndLocations(): Requesting native data.");
cv::Mat& myuv = *(cv::Mat*)addrMatIn;
cv::Mat& mbgr = *(cv::Mat*)addrMatOut;
cv::Mat& mCam = *(cv::Mat*)camMat;
cv::Mat& mDist = *(cv::Mat*)distMat;
jint * _codes = env->GetIntArrayElements(codes, 0);
jfloat * _tr = env->GetFloatArrayElements(translations, 0);
jfloat * _rt = env->GetFloatArrayElements(rotations, 0);
JNIEXPORT void JNICALL Java_ve_ucv_ciens_ccg_nxtar_MainActivity_getMarkerCodesAndLocations(
JNIEnv* env,
jobject jobj,
jlong addrMatIn,
jlong addrMatOut,
jintArray codes
){
char codeMsg[128];
std::vector<int> vCodes;
// Convert the input image to the BGR color space.
log(TAG, "getMarkerCodesAndLocations(): Converting color space before processing.");
cv::cvtColor(myuv, temp, CV_RGB2BGR);
log(TAG, "Requesting native data.");
// Find all markers in the input image.
log(TAG, "getMarkerCodesAndLocations(): Finding markers.");
nxtar::getAllMarkers(vMarkers, temp);
nxtar::estimateMarkerPosition(vMarkers, mCam, mDist);
cv::Mat& myuv = *(cv::Mat*)addrMatIn;
cv::Mat& mbgr = *(cv::Mat*)addrMatOut;
jint * _codes = env->GetIntArrayElements(codes, 0);
log(TAG, "Converting color space before processing.");
cv::cvtColor(myuv, mbgr, CV_RGB2BGR);
log(TAG, "Finding markers.");
nxtar::getAllMarkers(vCodes, mbgr);
log(TAG, "Copying marker codes.");
for(int i = 0; i < vCodes.size() && i < 15; i++){
_codes[i] = vCodes[i];
sprintf(codeMsg, "Code [%d] = %d", i, vCodes[i]);
log(TAG, codeMsg);
}
vCodes.clear();
log(TAG, "Releasing native data.");
env->ReleaseIntArrayElements(codes, _codes, 0);
// Copy the marker codes to the output vector.
log(TAG, "getMarkerCodesAndLocations(): Copying marker codes.");
for(size_t i = 0; i < vMarkers.size() && i < MAX_MARKERS; i++){
_codes[i] = (jint)vMarkers[i].code;
}
// Copy the geometric transformations to the output vectors.
for(int i = 0, p = 0; i < vMarkers.size(); i++, p += 3){
_tr[p ] = vMarkers[i].translation.at<jfloat>(0);
_tr[p + 1] = vMarkers[i].translation.at<jfloat>(1);
_tr[p + 2] = vMarkers[i].translation.at<jfloat>(2);
}
for(int k = 0; k < vMarkers.size(); k++){
for(int row = 0; row < 3; row++){
for(int col = 0; col < 3; col++){
_rt[col + (row * 3) + (9 * k)] = vMarkers[k].rotation.at<jfloat>(row, col);
}
}
}
// Clear marker memory.
vMarkers.clear();
// Convert the output image back to the RGB color space.
cv::cvtColor(temp, mbgr, CV_BGR2RGB);
// Release native data.
log(TAG, "getMarkerCodesAndLocations(): Releasing native data.");
env->ReleaseIntArrayElements(codes, _codes, 0);
env->ReleaseFloatArrayElements(translations, _tr, 0);
env->ReleaseFloatArrayElements(rotations, _rt, 0);
}
/**
* JNI wrapper around the nxtar::findCalibrationPattern() method.
*/
JNIEXPORT jboolean JNICALL Java_ve_ucv_ciens_ccg_nxtar_MainActivity_findCalibrationPattern(JNIEnv* env, jobject jobj, jlong addrMatIn, jlong addrMatOut, jfloatArray points){
nxtar::points_vector v_points;
bool found;
cv::Mat temp;
// Get the native object addresses.
log(TAG, "findCalibrationPattern(): Requesting native data.");
cv::Mat& myuv = *(cv::Mat*)addrMatIn;
cv::Mat& mbgr = *(cv::Mat*)addrMatOut;
jfloat * _points = env->GetFloatArrayElements(points, 0);
// Convert the input image to the BGR color space.
log(TAG, "findCalibrationPattern(): Converting color space before processing.");
cv::cvtColor(myuv, temp, CV_RGB2BGR);
// Find the calibration points in the input image.
log(TAG, "findCalibrationPattern(): Finding calibration pattern.");
found = nxtar::findCalibrationPattern(v_points, temp);
// If the points were found then save them to the output array.
if(found){
log(TAG, "findCalibrationPattern(): Copying calibration points.");
for(size_t i = 0, p = 0; i < v_points.size(); i++, p += 2){
_points[p ] = (jfloat)v_points[i].x;
_points[p + 1] = (jfloat)v_points[i].y;
}
}
// Convert the output image back to the RGB color space.
cv::cvtColor(temp, mbgr, CV_BGR2RGB);
// Release native data.
log(TAG, "findCalibrationPattern(): Releasing native data.");
env->ReleaseFloatArrayElements(points, _points, 0);
return (jboolean)found;
}
/**
* JNI wrapper around the nxtar::getCameraParameters() method.
*/
JNIEXPORT jdouble JNICALL Java_ve_ucv_ciens_ccg_nxtar_MainActivity_calibrateCameraParameters(JNIEnv* env, jobject jobj, jlong addrMatIn, jlong addrMatOut, jlong addrMatFrame, jfloatArray points){
double error;
std::vector<nxtar::points_vector> imagePoints;
// Get native object addresses.
log(TAG, "calibrateCameraParameters(): Requesting native data.");
cv::Mat& mIn = *(cv::Mat*)addrMatIn;
cv::Mat& mOut = *(cv::Mat*)addrMatOut;
cv::Mat& mFrame = *(cv::Mat*)addrMatFrame;
jfloat * _points = env->GetFloatArrayElements(points, 0);
// Prepare the image points data structure.
log(TAG, "calibrateCameraParameters(): Preparing image points.");
for(int i = 0; i < CALIBRATION_SAMPLES; i++){
nxtar::points_vector tempVector;
for(int j = 0, p = 0; j < POINTS_PER_CALIBRATION_SAMPLE; j++, p += 2){
tempVector.push_back(cv::Point2f(_points[p], _points[p + 1]));
}
imagePoints.push_back(tempVector);
}
// Get the camera parameters.
log(TAG, "calibrateCameraParameters(): Getting camera parameters.");
error = nxtar::getCameraParameters(mIn, mOut, imagePoints, mFrame.size());
// Clear the image points.
log(TAG, "calibrateCameraParameters(): Clearing memory.");
for(int i = 0; i < imagePoints.size(); i++){
imagePoints[i].clear();
}
imagePoints.clear();
// Release native memory.
log(TAG, "calibrateCameraParameters(): Releasing native data.");
env->ReleaseFloatArrayElements(points, _points, 0);
// Return the calibration error as calculated by OpenCV.
return error;
}
} // extern "C"

View File

@@ -16,383 +16,514 @@
#include <algorithm>
#include <utility>
#include <limits>
#include <stddef.h>
#ifdef DESKTOP
#include <iostream>
#endif
#include "marker.hpp"
#define MIN_CONTOUR_LENGTH 0.1
namespace nxtar{
static const cv::Scalar COLOR = cv::Scalar(255, 255, 255);
typedef std::vector<cv::Point3f> points_vector_3D;
typedef std::vector<std::vector<cv::Point> > contours_vector;
class Marker;
typedef std::vector<std::vector<cv::Point> > contours_vector;
typedef std::vector<cv::Point2f> points_vector;
typedef std::vector<Marker> markers_vector;
/******************************************************************************
* PRIVATE CONSTANTS *
******************************************************************************/
class Marker{
public:
~Marker();
points_vector points;
int code;
};
/**
* Minimal number of points in a contour.
*/
static const int MIN_POINTS = 40;
float perimeter(points_vector &);
int hammDistMarker(cv::Mat);
cv::Mat rotate(cv::Mat);
void binarize(cv::Mat &, cv::Mat &);
void findContours(cv::Mat &, contours_vector &, int);
void renderContours(contours_vector &, cv::Mat &);
void renderMarkers(markers_vector &, cv::Mat &);
void warpMarker(Marker &, cv::Mat &, cv::Mat &);
int decodeMarker(cv::Mat &);
void fixCorners(cv::Mat &, Marker &);
void isolateMarkers(const contours_vector &, markers_vector &);
/**
* Size of a square cell in the calibration pattern.
*/
static const float SQUARE_SIZE = 1.0f;
void getAllMarkers(std::vector<int> & codes, cv::Mat & img){
cv::Mat gray, thresh, cont, mark;
contours_vector contours;
markers_vector markers;
markers_vector valid_markers;
/**
* Minimal lenght of a contour to be considered as a marker candidate.
*/
static const float MIN_CONTOUR_LENGTH = 0.1;
codes.clear();
/**
* Flags for the calibration pattern detecion function.
*/
static const int PATTERN_DETECTION_FLAGS = cv::CALIB_CB_ADAPTIVE_THRESH + cv::CALIB_CB_NORMALIZE_IMAGE + cv::CALIB_CB_FAST_CHECK;
cv::cvtColor(img, gray, CV_BGR2GRAY);
binarize(gray, thresh);
findContours(thresh, contours, 40);
isolateMarkers(contours, markers);
/**
* Color for rendering the marker outlines.
*/
static const cv::Scalar COLOR = cv::Scalar(255, 255, 255);
for(int i = 0; i < markers.size(); i++){
warpMarker(markers[i], gray, mark);
/**
* Size of the chessboard pattern image (columns, rows).
*/
static const cv::Size CHESSBOARD_PATTERN_SIZE(6, 9);
int code = decodeMarker(mark);
/**
* Termination criteria for OpenCV's iterative algorithms.
*/
static const cv::TermCriteria TERM_CRITERIA = cv::TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 30, 0.1);
if(code != -1){
markers[i].code = code;
valid_markers.push_back(markers[i]);
}
}
/******************************************************************************
* PRIVATE FUNCTION PROTOTYPES *
******************************************************************************/
for(int i = 0; i < valid_markers.size(); i++)
fixCorners(gray, valid_markers[i]);
float perimeter(points_vector &);
cont = cv::Mat::zeros(img.size(), CV_8UC3);
renderMarkers(valid_markers, cont);
int hammDistMarker(cv::Mat);
img = img + cont;
cv::Mat rotate(cv::Mat);
for(int i = 0; i < valid_markers.size(); i++){
codes.push_back(valid_markers[i].code);
}
int decodeMarker(cv::Mat &);
markers.clear();
contours.clear();
valid_markers.clear();
}
void renderMarkers(markers_vector &, cv::Mat &);
#ifdef DESKTOP
void getAllMarkers_d(std::vector<int> & codes, cv::Mat & img){
cv::Mat gray, thresh, cont, mark;
contours_vector contours;
markers_vector markers;
markers_vector valid_markers;
std::ostringstream oss;
void isolateMarkers(const contours_vector &, markers_vector &);
codes.clear();
void findContours(cv::Mat &, contours_vector &, int);
cv::cvtColor(img, gray, CV_BGR2GRAY);
binarize(gray, thresh);
findContours(thresh, contours, 40);
isolateMarkers(contours, markers);
void warpMarker(Marker &, cv::Mat &, cv::Mat &);
for(int i = 0; i < markers.size(); i++){
warpMarker(markers[i], gray, mark);
/******************************************************************************
* PUBLIC API *
******************************************************************************/
int code = decodeMarker(mark);
void getAllMarkers(markers_vector & valid_markers, cv::Mat & img){
cv::Mat gray, thresh, cont, mark;
contours_vector contours;
markers_vector markers;
#ifdef DESKTOP
std::ostringstream oss;
#endif
if(code != -1){
markers[i].code = code;
valid_markers.push_back(markers[i]);
}
}
valid_markers.clear();
for(int i = 0; i < valid_markers.size(); i++)
fixCorners(gray, valid_markers[i]);
// Find all marker candidates in the input image.
// 1) First, convert the image to grayscale.
// 2) Then, binarize the grayscale image.
// 3) Finally indentify all 4 sided figures in the binarized image.
cv::cvtColor(img, gray, CV_BGR2GRAY);
cv::adaptiveThreshold(gray, thresh, 255, cv::ADAPTIVE_THRESH_MEAN_C, cv::THRESH_BINARY_INV, 7, 7);
findContours(thresh, contours, MIN_POINTS);
isolateMarkers(contours, markers);
cont = cv::Mat::zeros(img.size(), CV_8UC3);
renderMarkers(valid_markers, cont);
// Remove the perspective distortion from the detected marker candidates.
// Then attempt to decode them and push the valid ones into the valid
// markers vector.
for(int i = 0; i < markers.size(); i++){
warpMarker(markers[i], gray, mark);
img = img + cont;
int code = decodeMarker(mark);
for(int i = 0; i < valid_markers.size(); i++){
oss << valid_markers[i].code;
if(code != -1){
markers[i].code = code;
valid_markers.push_back(markers[i]);
}
}
cv::putText(mark, oss.str(), cv::Point(5, 250), cv::FONT_HERSHEY_PLAIN, 2, cv::Scalar::all(128), 3, 8);
for(int i = 0; i < valid_markers.size(); i++){
#ifdef DESKTOP
// Render the detected valid markers with their codes for debbuging
// purposes.
oss << valid_markers[i].code;
oss.str("");
oss.clear();
cv::putText(mark, oss.str(), cv::Point(5, 250), cv::FONT_HERSHEY_PLAIN, 2, cv::Scalar::all(128), 3, 8);
oss << "Marker[" << i << "]";
oss.str("");
oss.clear();
cv::imshow(oss.str(), mark);
oss << "Marker[" << i << "]";
oss.str("");
oss.clear();
cv::imshow(oss.str(), mark);
codes.push_back(valid_markers[i].code);
}
oss.str("");
oss.clear();
#endif
// Fix the detected corners to better approximate the markers. And
// push their codes to the output vector.
cv::cornerSubPix(gray, valid_markers[i].points, cvSize(10, 10), cvSize(-1, -1), TERM_CRITERIA);
}
markers.clear();
contours.clear();
valid_markers.clear();
}
#endif
void binarize(cv::Mat & src, cv::Mat & dst){
cv::adaptiveThreshold(src, dst, 255, cv::ADAPTIVE_THRESH_MEAN_C, cv::THRESH_BINARY_INV, 7, 7);
}
void findContours(cv::Mat & img, contours_vector & v, int minP){
std::vector<std::vector<cv::Point> > c;
cv::findContours(img, c, CV_RETR_LIST, CV_CHAIN_APPROX_NONE);
v.clear();
for(size_t i = 0; i < c.size(); i++){
if(c[i].size() > minP){
v.push_back(c[i]);
}
}
}
void renderContours(contours_vector & v, cv::Mat & dst){
cv::drawContours(dst, v, -1, COLOR, 1, CV_AA);
}
void renderMarkers(markers_vector & v, cv::Mat & dst){
contours_vector cv;
for(size_t i = 0; i < v.size(); i++){
std::vector<cv::Point> pv;
for(size_t j = 0; j < v[i].points.size(); ++j)
pv.push_back(cv::Point2f(v[i].points[j].x, v[i].points[j].y));
cv.push_back(pv);
}
cv::drawContours(dst, cv, -1, COLOR, 1, CV_AA);
}
void isolateMarkers(const contours_vector & vc, markers_vector & vm){
std::vector<cv::Point> appCurve;
markers_vector posMarkers;
for(size_t i = 0; i < vc.size(); ++i){
double eps = vc[i].size() * 0.05;
cv::approxPolyDP(vc[i], appCurve, eps, true);
if(appCurve.size() != 4 || !cv::isContourConvex(appCurve)) continue;
float minD = std::numeric_limits<float>::max();
for(int i = 0; i < 4; i++){
cv::Point side = appCurve[i] - appCurve[(i + 1) % 4];
float sqSideLen = side.dot(side);
minD = std::min(minD, sqSideLen);
}
if(minD < MIN_CONTOUR_LENGTH) continue;
Marker m;
for(int i = 0; i < 4; i++)
m.points.push_back(cv::Point2f(appCurve[i].x, appCurve[i].y));
cv::Point v1 = m.points[1] - m.points[0];
cv::Point v2 = m.points[2] - m.points[0];
double o = (v1.x * v2.y) - (v1.y * v2.x);
if(o < 0.0) std::swap(m.points[1], m.points[3]);
posMarkers.push_back(m);
}
std::vector<std::pair<int, int> > tooNear;
for(size_t i = 0; i < posMarkers.size(); ++i){
const Marker & m1 = posMarkers[i];
for(size_t j = i + 1; j < posMarkers.size(); j++){
const Marker & m2 = posMarkers[j];
float dSq = 0.0f;
for(int c = 0; c < 4; c++){
cv::Point v = m1.points[c] - m2.points[c];
dSq += v.dot(v);
}
dSq /= 4.0f;
if(dSq < 100) tooNear.push_back(std::pair<int, int>(i, j));
}
}
std::vector<bool> remMask(posMarkers.size(), false);
for(size_t i = 0; i < tooNear.size(); ++i){
float p1 = perimeter(posMarkers[tooNear[i].first].points);
float p2 = perimeter(posMarkers[tooNear[i].second].points);
size_t remInd;
if(p1 > p2) remInd = tooNear[i].second;
else remInd = tooNear[i].first;
remMask[remInd] = true;
}
vm.clear();
for(size_t i = 0; i < posMarkers.size(); ++i){
if(remMask[i]) vm.push_back(posMarkers[i]);
}
}
void warpMarker(Marker & m, cv::Mat & in, cv::Mat & out){
cv::Mat bin;
cv::Size markerSize(350, 350);
points_vector v;
v.push_back(cv::Point2f(0,0));
v.push_back(cv::Point2f(markerSize.width-1,0));
v.push_back(cv::Point2f(markerSize.width-1,markerSize.height-1));
v.push_back(cv::Point2f(0,markerSize.height-1));
cv::Mat M = cv::getPerspectiveTransform(m.points, v);
cv::warpPerspective(in, bin, M, markerSize);
cv::threshold(bin, out, 128, 255, cv::THRESH_BINARY | cv::THRESH_OTSU);
}
int hammDistMarker(cv::Mat bits){
int ids[4][5] = {
{1,0,0,0,0},
{1,0,1,1,1},
{0,1,0,0,1},
{0,1,1,1,0}
};
int dist = 0;
for (int y = 0; y < 5; y++){
int minSum = 1e5;
for (int p = 0; p < 4; p++){
int sum = 0;
for (int x = 0; x < 5; x++){
sum += bits.at<uchar>(y, x) == ids[p][x] ? 0 : 1;
}
if(minSum > sum)
minSum = sum;
}
dist += minSum;
}
return dist;
}
cv::Mat rotate(cv::Mat in){
cv::Mat out;
in.copyTo(out);
for (int i=0;i<in.rows;i++){
for (int j=0;j<in.cols;j++){
out.at<uchar>(i,j)=in.at<uchar>(in.cols-j-1,i);
}
}
return out;
}
int decodeMarker(cv::Mat & marker){
bool found = false;
int code = 0;
cv::Mat bits;
for(int y = 0; y < 7; y++){
int inc = (y == 0 || y == 6) ? 1 : 6;
for(int x = 0; x < 7; x += inc){
int cX = x * 50;
int cY = y * 50;
cv::Mat cell = marker(cv::Rect(cX, cY, 50, 50));
int nZ = cv::countNonZero(cell);
// Not a valid marker.
if(nZ > (50 * 50) / 2) return -1;
}
}
bits = cv::Mat::zeros(5, 5, CV_8UC1);
for(int y = 0; y < 5; y++){
for(int x = 0; x < 5; x++){
int cX = (x + 1) * 50;
int cY = (y + 1) * 50;
cv::Mat cell = marker(cv::Rect(cX, cY, 50, 50));
int nZ = cv::countNonZero(cell);
if(nZ > (50 * 50) / 2) bits.at<uchar>(y, x) = 1;
}
}
if(hammDistMarker(bits) != 0){
for(int r = 1; r < 4; r++){
bits = rotate(bits);
if(hammDistMarker(bits) != 0) continue;
else{ found = true; break;}
}
}else found = true;
if(found){
for(int y = 0; y < 5; y++){
code <<= 1;
if(bits.at<uchar>(y, 1))
code |= 1;
code <<= 1;
if(bits.at<uchar>(y, 3))
code |= 1;
}
return code;
}else
return -1;
}
void fixCorners(cv::Mat & img, Marker & m){
cv::cornerSubPix(img, m.points, cvSize(10, 10), cvSize(-1, -1), cvTermCriteria(CV_TERMCRIT_ITER, 30, 0.1));
}
float perimeter(points_vector & p){
float per = 0.0f, dx, dy;
for(size_t i; i < p.size(); ++i){
dx = p[i].x - p[(i + 1) % p.size()].x;
dy = p[i].y - p[(i + 1) % p.size()].y;
per += sqrt((dx * dx) + (dy * dy));
}
return per;
}
Marker::~Marker(){
points.clear();
}
// Render the detected markers on top of the input image.
cont = cv::Mat::zeros(img.size(), CV_8UC3);
renderMarkers(valid_markers, cont);
img = img + cont;
// Clear the local vectors.
markers.clear();
contours.clear();
}
bool findCalibrationPattern(points_vector & corners, cv::Mat & img){
bool patternfound;
cv::Mat gray;
// Convert the input image to grayscale and attempt to find the
// calibration pattern.
cv::cvtColor(img, gray, CV_BGR2GRAY);
patternfound = cv::findChessboardCorners(gray, CHESSBOARD_PATTERN_SIZE, corners, PATTERN_DETECTION_FLAGS);
// If the pattern was found then fix the detected points a bit.
if(patternfound)
cv::cornerSubPix(gray, corners, cv::Size(11, 11), cv::Size(-1, -1), TERM_CRITERIA);
// Render the detected pattern.
cv::drawChessboardCorners(img, CHESSBOARD_PATTERN_SIZE, cv::Mat(corners), patternfound);
return patternfound;
}
double getCameraParameters(cv::Mat & camera_matrix, cv::Mat & dist_coeffs, std::vector<points_vector> & image_points, cv::Size image_size){
std::vector<cv::Mat> rvecs, tvecs;
std::vector<points_vector_3D> object_points;
points_vector_3D corner_points;
// Build the reference object points vector.
for(int i = 0; i < CHESSBOARD_PATTERN_SIZE.height; i++){
for(int j = 0; j < CHESSBOARD_PATTERN_SIZE.width; j++){
corner_points.push_back(cv::Point3f(float( j * SQUARE_SIZE ), float( i * SQUARE_SIZE ), 0));
}
}
object_points.push_back(corner_points);
object_points.resize(image_points.size(), object_points[0]);
// Build a camera matrix.
camera_matrix = cv::Mat::eye(3, 3, CV_64F);
// Build the distortion coefficients matrix.
dist_coeffs = cv::Mat::zeros(8, 1, CV_64F);
// Calibrate and return the reprojection error.
return cv::calibrateCamera(object_points, image_points, image_size, camera_matrix, dist_coeffs, rvecs, tvecs, 0, TERM_CRITERIA);
}
void estimateMarkerPosition(markers_vector & markers, cv::Mat & camMatrix, cv::Mat & distCoeff){
cv::Mat rVec, rAux, tAux;
cv::Mat_<float> tVec, rotation(3,3);
points_vector_3D objectPoints;
// Assemble a unitary CCW oriented reference polygon.
objectPoints.push_back(cv::Point3f(-0.5f, -0.5f, 0.0f));
objectPoints.push_back(cv::Point3f(-0.5f, 0.5f, 0.0f));
objectPoints.push_back(cv::Point3f( 0.5f, 0.5f, 0.0f));
objectPoints.push_back(cv::Point3f( 0.5f, -0.5f, 0.0f));
for(size_t i = 0; i < markers.size(); i++){
// Obtain the translation and rotation vectors.
cv::solvePnP(objectPoints, markers[i].points, camMatrix, distCoeff, rAux, tAux);
// Convert the obtained vectors to float.
rAux.convertTo(rVec, CV_32F);
tAux.convertTo(tVec, CV_32F);
// Convert the rotation vector to a rotation matrix.
cv::Rodrigues(rVec, rotation);
// Make the rotation and translation relative to the "camera" and save
// the results to the output marker.
markers[i].rotation = cv::Mat(rotation.t());
markers[i].translation = cv::Mat(-tVec);
}
}
/******************************************************************************
* PRIVATE HELPER FUNCTIONS *
******************************************************************************/
/**
* Find all contours in the input image and save them to the output
* vector.
*/
void findContours(cv::Mat & img, contours_vector & v, int minP){
contours_vector c;
// A contour is discarded if it possess less than the specified
// minimum number of points.
cv::findContours(img, c, CV_RETR_LIST, CV_CHAIN_APPROX_NONE);
v.clear();
for(size_t i = 0; i < c.size(); i++){
if(c[i].size() > minP){
v.push_back(c[i]);
}
}
}
/**
* Render the input marker vector onto the output image.
*/
void renderMarkers(markers_vector & v, cv::Mat & dst){
contours_vector cv;
// Extract the points that form every marker into a contours vector.
for(size_t i = 0; i < v.size(); i++){
std::vector<cv::Point> pv;
for(size_t j = 0; j < v[i].points.size(); ++j)
pv.push_back(cv::Point2f(v[i].points[j].x, v[i].points[j].y));
cv.push_back(pv);
}
// Render.
cv::drawContours(dst, cv, -1, COLOR, 1, CV_AA);
}
/**
* Identify and return all marker candidates.
*/
void isolateMarkers(const contours_vector & vc, markers_vector & vm){
std::vector<cv::Point> appCurve;
markers_vector posMarkers;
// For every detected contour.
for(size_t i = 0; i < vc.size(); ++i){
double eps = vc[i].size() * 0.05;
// Approximate the contour with a polygon.
cv::approxPolyDP(vc[i], appCurve, eps, true);
// If the polygon is not a cuadrilateral then this is not a marker
// candidate.
if(appCurve.size() != 4 || !cv::isContourConvex(appCurve)) continue;
// Calculate the lenght of the perimeter of this candidate. If it
// is too short then discard it.
float minD = std::numeric_limits<float>::max();
for(int i = 0; i < 4; i++){
cv::Point side = appCurve[i] - appCurve[(i + 1) % 4];
float sqSideLen = side.dot(side);
minD = std::min(minD, sqSideLen);
}
if(minD < MIN_CONTOUR_LENGTH) continue;
// Save the marker and order it's points counter-clockwise.
Marker m;
for(int i = 0; i < 4; i++)
m.points.push_back(cv::Point2f(appCurve[i].x, appCurve[i].y));
cv::Point v1 = m.points[1] - m.points[0];
cv::Point v2 = m.points[2] - m.points[0];
double o = (v1.x * v2.y) - (v1.y * v2.x);
if(o < 0.0) std::swap(m.points[1], m.points[3]);
posMarkers.push_back(m);
}
// Identify contours that are to close to each other to eliminate
// possible duplicates.
std::vector<std::pair<int, int> > tooNear;
for(size_t i = 0; i < posMarkers.size(); ++i){
const Marker & m1 = posMarkers[i];
for(size_t j = i + 1; j < posMarkers.size(); j++){
const Marker & m2 = posMarkers[j];
float dSq = 0.0f;
for(int c = 0; c < 4; c++){
cv::Point v = m1.points[c] - m2.points[c];
dSq += v.dot(v);
}
dSq /= 4.0f;
if(dSq < 100) tooNear.push_back(std::pair<int, int>(i, j));
}
}
// Mark one of every pair of duplicates to be discarded.
std::vector<bool> remMask(posMarkers.size(), false);
for(size_t i = 0; i < tooNear.size(); ++i){
float p1 = perimeter(posMarkers[tooNear[i].first].points);
float p2 = perimeter(posMarkers[tooNear[i].second].points);
size_t remInd;
if(p1 > p2) remInd = tooNear[i].second;
else remInd = tooNear[i].first;
remMask[remInd] = true;
}
// Save the candidates that survided the duplicates test.
vm.clear();
for(size_t i = 0; i < posMarkers.size(); ++i){
if(!remMask[i]) vm.push_back(posMarkers[i]);
}
}
/**
* Warp a marker image to remove it's perspective distortion.
*/
void warpMarker(Marker & m, cv::Mat & in, cv::Mat & out){
cv::Mat bin;
cv::Size markerSize(350, 350);
points_vector v;
// Assemble a unitary reference polygon.
v.push_back(cv::Point2f(0,0));
v.push_back(cv::Point2f(markerSize.width-1,0));
v.push_back(cv::Point2f(markerSize.width-1,markerSize.height-1));
v.push_back(cv::Point2f(0,markerSize.height-1));
// Warp the input image's perspective to transform it into the reference
// polygon's perspective.
cv::Mat M = cv::getPerspectiveTransform(m.points, v);
cv::warpPerspective(in, bin, M, markerSize);
// Binarize the warped image into the output image.
cv::threshold(bin, out, 128, 255, cv::THRESH_BINARY | cv::THRESH_OTSU);
}
/**
* Calculate the hamming distance of a 5x5 bit matrix.
* Function by Daniel Lelis Baggio for "Mastering OpenCV with Practical Computer Vision Projects".
*/
int hammDistMarker(cv::Mat bits){
int ids[4][5] = {
{1,0,0,0,0},
{1,0,1,1,1},
{0,1,0,0,1},
{0,1,1,1,0}
};
int dist = 0;
for (int y = 0; y < 5; y++){
int minSum = 1e5;
for (int p = 0; p < 4; p++){
int sum = 0;
for (int x = 0; x < 5; x++){
sum += bits.at<uchar>(y, x) == ids[p][x] ? 0 : 1;
}
if(minSum > sum)
minSum = sum;
}
dist += minSum;
}
return dist;
}
/**
* Rotate a matrix by 90 degrees clockwise.
*/
cv::Mat rotate(cv::Mat in){
cv::Mat out;
in.copyTo(out);
for (int i = 0; i < in.rows; i++){
for (int j = 0; j < in.cols; j++){
out.at<uchar>(i, j) = in.at<uchar>(in.cols-j - 1, i);
}
}
return out;
}
/**
* Decode a marker image and return it's code. Returns -1 if the image is
* not a valid marker.
*/
int decodeMarker(cv::Mat & marker){
bool found = false;
int code = 0;
cv::Mat bits;
// Verify that the outer rim of marker cells are all black.
for(int y = 0; y < 7; y++){
int inc = (y == 0 || y == 6) ? 1 : 6;
for(int x = 0; x < 7; x += inc){
int cX = x * 50;
int cY = y * 50;
cv::Mat cell = marker(cv::Rect(cX, cY, 50, 50));
int nZ = cv::countNonZero(cell);
// If one of the rim cells is 50% white or more then this
// is not a valid marker.
if(nZ > (50 * 50) / 2) return -1;
}
}
// Create a 5x5 matrix to hold a simplified representation of this
// marker.
bits = cv::Mat::zeros(5, 5, CV_8UC1);
// For every cell in the marker flip it's corresponding 'bit' in the
// bit matrix if it is at least 50 % white.
for(int y = 0; y < 5; y++){
for(int x = 0; x < 5; x++){
int cX = (x + 1) * 50;
int cY = (y + 1) * 50;
cv::Mat cell = marker(cv::Rect(cX, cY, 50, 50));
int nZ = cv::countNonZero(cell);
if(nZ > (50 * 50) / 2) bits.at<uchar>(y, x) = 1;
}
}
// Calcultate the hamming distance of the bit matrix and each of it's
// 90 degree rotations to determine if this marker has a valid code.
if(hammDistMarker(bits) != 0){
for(int r = 1; r < 4; r++){
bits = rotate(bits);
if(hammDistMarker(bits) != 0) continue;
else{ found = true; break;}
}
}else found = true;
// If the code is valid then decode it to an int and return it.
if(found){
for(int y = 0; y < 5; y++){
code <<= 1;
if(bits.at<uchar>(y, 1))
code |= 1;
code <<= 1;
if(bits.at<uchar>(y, 3))
code |= 1;
}
return code;
}else
return -1;
}
/**
* Calculate the perimeter of a polygon defined as a vector of points.
*/
float perimeter(points_vector & p){
float per = 0.0f, dx, dy;
for(size_t i; i < p.size(); ++i){
dx = p[i].x - p[(i + 1) % p.size()].x;
dy = p[i].y - p[(i + 1) % p.size()].y;
per += sqrt((dx * dx) + (dy * dy));
}
return per;
}
/******************************************************************************
* CLASS METHODS *
******************************************************************************/
/**
* Clear the points vector associated with this marker.
*/
Marker::~Marker(){
points.clear();
}
} // namespace nxtar

View File

@@ -17,13 +17,58 @@
#define MARKER_HPP
#include <vector>
#include <opencv2/opencv.hpp>
namespace nxtar{
void getAllMarkers(std::vector<int> &, cv::Mat &);
#ifdef DESKTOP
void getAllMarkers_d(std::vector<int> &, cv::Mat &);
#endif
}
#endif
class Marker;
typedef std::vector<cv::Point2f> points_vector;
typedef std::vector<Marker> markers_vector;
/**
* A class representing a marker with the geometric transformations needed to
* render something on top of it.
*/
class Marker{
public:
~Marker();
int code;
points_vector points;
cv::Mat translation;
cv::Mat rotation;
};
/**
* Detect all 5x5 markers in the input image and return their codes in the
* output vector.
*/
void getAllMarkers(markers_vector &, cv::Mat &);
/**
* Find a chessboard calibration pattern in the input image. Returns true
* if the pattern was found, false otherwise. The calibration points
* detected on the image are saved in the output vector.
*/
bool findCalibrationPattern(points_vector &, cv::Mat &);
/**
* Sets the camera matrix and the distortion coefficients for the camera
* that captured the input image points into the output matrices. Returns
* the reprojection error as returned by cv::calibrateCamera.
*/
double getCameraParameters(cv::Mat &, cv::Mat &, std::vector<points_vector> &, cv::Size);
/**
* Obtains the necesary geometric transformations necessary to move a reference
* unitary polygon to the position and rotation of the markers passed as input.
* The obtained transformations are given relative to a camera centered in the
* origin and are saved inside the input markers.
*/
void estimateMarkerPosition(markers_vector &, cv::Mat &, cv::Mat &);
} // namespace nxtar
#endif // MARKER_HPP

View File

@@ -24,9 +24,9 @@ import org.opencv.android.Utils;
import org.opencv.core.Mat;
import org.opencv.imgproc.Imgproc;
import ve.ucv.ciens.ccg.nxtar.interfaces.CVProcessor;
import ve.ucv.ciens.ccg.nxtar.interfaces.MulticastEnabler;
import ve.ucv.ciens.ccg.nxtar.interfaces.Toaster;
import ve.ucv.ciens.ccg.nxtar.interfaces.AndroidFunctionalityWrapper;
import ve.ucv.ciens.ccg.nxtar.interfaces.ImageProcessor;
import ve.ucv.ciens.ccg.nxtar.utils.ProjectConstants;
import android.content.Context;
import android.content.pm.ActivityInfo;
import android.graphics.Bitmap;
@@ -42,73 +42,213 @@ import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.backends.android.AndroidApplication;
import com.badlogic.gdx.backends.android.AndroidApplicationConfiguration;
import com.badlogic.gdx.controllers.mappings.Ouya;
import com.badlogic.gdx.math.Matrix3;
import com.badlogic.gdx.math.Vector3;
public class MainActivity extends AndroidApplication implements Toaster, MulticastEnabler, CVProcessor{
/**
* <p>The main activity of the application.</p>
*
* <p>Provides operating system services to the LibGDX platform
* independant code, and handles OpenCV initialization and api calls.</p>
*/
public class MainActivity extends AndroidApplication implements AndroidFunctionalityWrapper, ImageProcessor{
/**
* Tag used for logging.
*/
private static final String TAG = "NXTAR_ANDROID_MAIN";
/**
* Class name used for logging.
*/
private static final String CLASS_NAME = MainActivity.class.getSimpleName();
/**
* Output stream used to codify images as JPEG using Android's Bitmap class.
*/
private static final ByteArrayOutputStream outputStream = new ByteArrayOutputStream();
/**
* Indicates if OpenCV was initialized sucessfully.
*/
private static boolean ocvOn = false;
/**
* Intrinsic camera matrix.
*/
private static Mat cameraMatrix;
/**
* Distortion coeffitients matrix.
*/
private static Mat distortionCoeffs;
/**
* Used to set and release multicast locks.
*/
private WifiManager wifiManager;
/**
* Used to maintain the multicast lock during the service discovery procedure.
*/
private MulticastLock multicastLock;
/**
* Handler used for requesting toast messages from the core LibGDX code.
*/
private Handler uiHandler;
/**
* User interface context used to show the toast messages.
*/
private Context uiContext;
private boolean ocvOn;
/**
* OpenCV asynchronous initializer callback for mobile devices.
*/
private BaseLoaderCallback loaderCallback;
private final ByteArrayOutputStream outputStream = new ByteArrayOutputStream();
/*static{
if (!OpenCVLoader.initDebug()){
Gdx.app.exit();
}
System.loadLibrary("cvproc");
}*/
/**
* Indicates if the current video streaming camera has been calibrated.
*/
private boolean cameraCalibrated;
public native void getMarkerCodesAndLocations(long inMat, long outMat, int[] codes);
/**
* <p>Wrapper for the getAllMarkers native function.</p>
*
* @param inMat INPUT. The image to analize.
* @param outMat OUTPUT. The image with the markers highlighted.
* @param codes OUTPUT. The codes for each marker detected. Must be {@link ProjectConstants.MAXIMUM_NUMBER_OF_MARKERS} elements long.
* @param camMat INPUT. The intrinsic camera matrix.
* @param distMat INPUT. The distortion coefficients of the camera.
* @param translations OUTPUT. The markers pose translations. Must be {@link ProjectConstants.MAXIMUM_NUMBER_OF_MARKERS} * 3 elements long.
* @param rotations OUTPUT. The markers pose rotations. Must be {@link ProjectConstants.MAXIMUM_NUMBER_OF_MARKERS} * 9 elements long.
*/
private native void getMarkerCodesAndLocations(long inMat, long outMat, int[] codes, long camMat, long distMat, float[] translations, float[] rotations);
/**
* <p>Wrapper for the findCalibrationPattern native function.</p>
*
* @param inMat INPUT. The image to analize.
* @param outMat OUTPUT. The image with the calibration pattern highlighted.
* @param points OUTPUT. The spatial location of the calibration points if found.
* @return True if the calibration pattern was found. False otherwise.
*/
private native boolean findCalibrationPattern(long inMat, long outMat, float[] points);
/**
* <p>Wrapper around the getCameraParameters native function.</p>
*
* @param camMat OUTPUT. The intrinsic camera matrix.
* @param distMat OUTPUT. The distortion coeffitients matrix.
* @param frame INPUT. A sample input image from the camera to calibrate.
* @param calibrationPoints INPUT. The calibration points of all samples.
* @return The calibration error as returned by OpenCV.
*/
private native double calibrateCameraParameters(long camMat, long distMat, long frame, float[] calibrationPoints);
/**
* <p>Static block. Tries to load OpenCV and the native method implementations
* statically if running on an OUYA device.</p>
*/
static{
if(Ouya.runningOnOuya){
if(!OpenCVLoader.initDebug())
ocvOn = false;
try{
System.loadLibrary("cvproc");
ocvOn = true;
}catch(UnsatisfiedLinkError u){
ocvOn = false;
}
}
}
/**
* <p>Initializes this activity</p>
*
* <p>This method handles the initialization of LibGDX and OpenCV. OpenCV is
* loaded the asynchronous method if the devices is not an OUYA console.</p>
*
* @param savedInstanceState The application state if it was saved in a previous run.
*/
@Override
public void onCreate(Bundle savedInstanceState){
super.onCreate(savedInstanceState);
ocvOn = false;
cameraCalibrated = false;
// Set screen orientation. Portrait on mobile devices, landscape on OUYA.
if(!Ouya.runningOnOuya){
setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_PORTRAIT);
}else{
setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_LANDSCAPE);
}
// Set up the Android related variables.
uiHandler = new Handler();
uiContext = this;
wifiManager = (WifiManager)getSystemService(Context.WIFI_SERVICE);
// Attempt to initialize OpenCV.
if(!Ouya.runningOnOuya){
// If running on a moble device, use the asynchronous method aided
// by the OpenCV Manager app.
loaderCallback = new BaseLoaderCallback(this){
@Override
public void onManagerConnected(int status){
switch(status){
case LoaderCallbackInterface.SUCCESS:
// If successfully initialized then load the native method implementations and
// initialize the static matrices.
System.loadLibrary("cvproc");
ocvOn = true;
cameraMatrix = new Mat();
distortionCoeffs = new Mat();
break;
default:
Toast.makeText(uiContext, R.string.ocv_failed, Toast.LENGTH_LONG).show();
ocvOn = false;
break;
}
}
};
// Launch the asynchronous initializer.
OpenCVLoader.initAsync(OpenCVLoader.OPENCV_VERSION_2_4_7, this, loaderCallback);
}else{
// If running on an OUYA device.
if(ocvOn){
// If OpenCV loaded successfully then initialize the native matrices.
cameraMatrix = new Mat();
distortionCoeffs = new Mat();
}else{
Toast.makeText(uiContext, R.string.ocv_failed, Toast.LENGTH_LONG).show();
}
}
// Configure LibGDX.
AndroidApplicationConfiguration cfg = new AndroidApplicationConfiguration();
cfg.useGL20 = true;
cfg.useAccelerometer = false;
cfg.useCompass = false;
cfg.useWakelock = true;
loaderCallback = new BaseLoaderCallback(this){
@Override
public void onManagerConnected(int status){
switch(status){
case LoaderCallbackInterface.SUCCESS:
System.loadLibrary("cvproc");
ocvOn = true;
break;
default:
Toast.makeText(uiContext, R.string.ocv_failed, Toast.LENGTH_LONG).show();
Gdx.app.exit();
break;
}
}
};
OpenCVLoader.initAsync(OpenCVLoader.OPENCV_VERSION_2_4_7, this, loaderCallback);
// Launch the LibGDX core game class.
initialize(new NxtARCore(this), cfg);
}
////////////////////////////////
// Toaster interface methods. //
////////////////////////////////
////////////////////////////////////////////////
// OSFunctionalityProvider interface methods. //
////////////////////////////////////////////////
/**
* <p>Shows a short message on screen using Android's toast mechanism.</p>
*
* @param msg The message to show.
*/
@Override
public void showShortToast(final String msg){
uiHandler.post(new Runnable(){
@@ -119,6 +259,11 @@ public class MainActivity extends AndroidApplication implements Toaster, Multica
});
}
/**
* <p>Shows a long message on screen using Android's toast mechanism.</p>
*
* @param msg The message to show.
*/
@Override
public void showLongToast(final String msg){
uiHandler.post(new Runnable(){
@@ -129,9 +274,9 @@ public class MainActivity extends AndroidApplication implements Toaster, Multica
});
}
/////////////////////////////////////////
// MulticastEnabler interface methods. //
/////////////////////////////////////////
/**
* <p>Enable the transmision and reception of multicast network messages.</p>
*/
@Override
public void enableMulticast(){
Gdx.app.log(TAG, CLASS_NAME + ".enableMulticast() :: Requesting multicast lock.");
@@ -140,6 +285,9 @@ public class MainActivity extends AndroidApplication implements Toaster, Multica
multicastLock.acquire();
}
/**
* <p>Disables the transmision and reception of multicast network messages.</p>
*/
@Override
public void disableMulticast(){
Gdx.app.log(TAG, CLASS_NAME + ".disableMulticast() :: Releasing multicast lock.");
@@ -149,40 +297,205 @@ public class MainActivity extends AndroidApplication implements Toaster, Multica
}
}
////////////////////////////////////
// CVProcessor interface methods. //
////////////////////////////////////
@Override
public CVData processFrame(byte[] frame, int w, int h) {
public MarkerData findMarkersInFrame(byte[] frame){
if(ocvOn){
int codes[] = new int[15];
if(cameraCalibrated){
int[] codes = new int[ProjectConstants.MAXIMUM_NUMBER_OF_MARKERS];
float[] translations = new float[ProjectConstants.MAXIMUM_NUMBER_OF_MARKERS * 3];
float[] rotations = new float[ProjectConstants.MAXIMUM_NUMBER_OF_MARKERS * 9];
MarkerData data;
Bitmap tFrame, mFrame;
Mat inImg = new Mat();
Mat outImg = new Mat();
// Fill the codes array with -1 to indicate markers that were not found;
for(int i : codes)
codes[i] = -1;
// Decode the input image and convert it to an OpenCV matrix.
tFrame = BitmapFactory.decodeByteArray(frame, 0, frame.length);
Utils.bitmapToMat(tFrame, inImg);
// Find the markers in the input image.
getMarkerCodesAndLocations(inImg.getNativeObjAddr(), outImg.getNativeObjAddr(), codes, cameraMatrix.getNativeObjAddr(), distortionCoeffs.getNativeObjAddr(), translations, rotations);
// Encode the output image as a JPEG image.
mFrame = Bitmap.createBitmap(outImg.cols(), outImg.rows(), Bitmap.Config.RGB_565);
Utils.matToBitmap(outImg, mFrame);
mFrame.compress(CompressFormat.JPEG, 100, outputStream);
// Create and fill the output data structure.
data = new MarkerData();
data.outFrame = outputStream.toByteArray();
data.markerCodes = codes;
data.rotationMatrices = new Matrix3[ProjectConstants.MAXIMUM_NUMBER_OF_MARKERS];
data.translationVectors = new Vector3[ProjectConstants.MAXIMUM_NUMBER_OF_MARKERS];
for(int i = 0, p = 0; i < ProjectConstants.MAXIMUM_NUMBER_OF_MARKERS; i++, p += 3){
data.translationVectors[i] = new Vector3(translations[p], translations[p + 1], translations[p + 2]);
}
for(int k = 0; k < ProjectConstants.MAXIMUM_NUMBER_OF_MARKERS; k++){
data.rotationMatrices[k] = new Matrix3();
for(int row = 0; row < 3; row++){
for(int col = 0; col < 3; col++){
data.rotationMatrices[k].val[col + (row * 3)] = rotations[col + (row * 3) + (9 * k)];
}
}
}
// Clean up memory.
tFrame.recycle();
mFrame.recycle();
outputStream.reset();
return data;
}else{
Gdx.app.debug(TAG, CLASS_NAME + ".findMarkersInFrame(): The camera has not been calibrated.");
return null;
}
}else{
Gdx.app.debug(TAG, CLASS_NAME + ".findMarkersInFrame(): OpenCV is not ready or failed to load.");
return null;
}
}
@Override
public CalibrationData findCalibrationPattern(byte[] frame){
if(ocvOn){
boolean found;
float points[] = new float[ProjectConstants.CALIBRATION_PATTERN_POINTS * 2];
Bitmap tFrame, mFrame;
Mat inImg = new Mat(), outImg = new Mat();
CalibrationData data = new CalibrationData();
// Decode the input frame and convert it to an OpenCV Matrix.
tFrame = BitmapFactory.decodeByteArray(frame, 0, frame.length);
Mat inImg = new Mat();
Mat outImg = new Mat();
Utils.bitmapToMat(tFrame, inImg);
getMarkerCodesAndLocations(inImg.getNativeObjAddr(), outImg.getNativeObjAddr(), codes);
// Attempt to find the calibration pattern in the input frame.
found = findCalibrationPattern(inImg.getNativeObjAddr(), outImg.getNativeObjAddr(), points);
Mat temp = new Mat();
Imgproc.cvtColor(outImg, temp, Imgproc.COLOR_BGR2RGB);
mFrame = Bitmap.createBitmap(temp.cols(), temp.rows(), Bitmap.Config.RGB_565);
Utils.matToBitmap(temp, mFrame);
// Encode the output image as a JPEG image.
mFrame = Bitmap.createBitmap(outImg.cols(), outImg.rows(), Bitmap.Config.RGB_565);
Utils.matToBitmap(outImg, mFrame);
mFrame.compress(CompressFormat.JPEG, 100, outputStream);
CVData data = new CVData();
// Prepare the output data structure.
data.outFrame = outputStream.toByteArray();
data.markerCodes = codes;
data.calibrationPoints = found ? points : null;
// Clean up memory.
tFrame.recycle();
mFrame.recycle();
outputStream.reset();
return data;
}else{
Gdx.app.debug(TAG, CLASS_NAME + ".processFrame(): OpenCV is not ready or failed to load.");
}else{
Gdx.app.debug(TAG, CLASS_NAME + ".findCalibrationPattern(): OpenCV is not ready or failed to load.");
return null;
}
}
@Override
public void calibrateCamera(float[][] calibrationSamples, byte[] frame) {
if(ocvOn){
float[] calibrationPoints = new float[ProjectConstants.CALIBRATION_PATTERN_POINTS * 2 * ProjectConstants.CALIBRATION_SAMPLES];
int w = ProjectConstants.CALIBRATION_PATTERN_POINTS * 2;
Bitmap tFrame;
Mat inImg = new Mat();
// Save the calibration points on a one dimensional array for easier parameter passing
// to the native code.
for(int i = 0; i < ProjectConstants.CALIBRATION_SAMPLES; i++){
for(int j = 0, p = 0; j < ProjectConstants.CALIBRATION_PATTERN_POINTS; j++, p += 2){
calibrationPoints[p + (w * i)] = calibrationSamples[i][p];
calibrationPoints[(p + 1) + (w * i)] = calibrationSamples[i][p + 1];
}
}
// Decode the input image and convert it to an OpenCV matrix.
tFrame = BitmapFactory.decodeByteArray(frame, 0, frame.length);
Utils.bitmapToMat(tFrame, inImg);
// Attempt to obtain the camera parameters.
double error = calibrateCameraParameters(cameraMatrix.getNativeObjAddr(), distortionCoeffs.getNativeObjAddr(), inImg.getNativeObjAddr(), calibrationPoints);
Gdx.app.log(TAG, CLASS_NAME + "calibrateCamera(): calibrateCameraParameters retured " + Double.toString(error));
cameraCalibrated = true;
}else{
Gdx.app.debug(TAG, CLASS_NAME + ".calibrateCamera(): OpenCV is not ready or failed to load.");
}
}
@Override
public byte[] undistortFrame(byte[] frame){
if(ocvOn){
if(cameraCalibrated){
byte undistortedFrame[];
Bitmap tFrame, mFrame;
Mat inImg = new Mat(), outImg = new Mat();
// Decode the input frame and convert it to an OpenCV Matrix.
tFrame = BitmapFactory.decodeByteArray(frame, 0, frame.length);
Utils.bitmapToMat(tFrame, inImg);
// Apply the undistort correction to the input frame.
Imgproc.undistort(inImg, outImg, cameraMatrix, distortionCoeffs);
// Encode the output image as a JPEG image.
mFrame = Bitmap.createBitmap(outImg.cols(), outImg.rows(), Bitmap.Config.RGB_565);
Utils.matToBitmap(outImg, mFrame);
mFrame.compress(CompressFormat.JPEG, 100, outputStream);
// Prepare the return frame.
undistortedFrame = outputStream.toByteArray();
// Clean up memory.
tFrame.recycle();
mFrame.recycle();
outputStream.reset();
return undistortedFrame;
}else{
Gdx.app.debug(TAG, CLASS_NAME + ".undistortFrame(): Camera has not been calibrated.");
return null;
}
}else{
Gdx.app.debug(TAG, CLASS_NAME + ".undistortFrame(): OpenCV is not ready or failed to load.");
return null;
}
}
@Override
public boolean isCameraCalibrated() {
return ocvOn && cameraCalibrated;
}
@Override
public float getFocalPointX() {
return ocvOn && cameraCalibrated ? (float)cameraMatrix.get(0, 0)[0] : 0.0f;
}
@Override
public float getFocalPointY() {
return ocvOn && cameraCalibrated ? (float)cameraMatrix.get(1, 1)[0] : 0.0f;
}
@Override
public float getCameraCenterX() {
return ocvOn && cameraCalibrated ? (float)cameraMatrix.get(0, 2)[0] : 0.0f;
}
@Override
public float getCameraCenterY() {
return ocvOn && cameraCalibrated ? (float)cameraMatrix.get(1, 2)[0] : 0.0f;
}
}