Added indirect illumination.
This commit is contained in:
4
TODO.org
4
TODO.org
@@ -1,4 +1,4 @@
|
||||
* Features [7/19]
|
||||
* Features [8/20]
|
||||
|
||||
- [X] Perspective projection
|
||||
- [X] Ray-sphere intersection
|
||||
@@ -20,7 +20,7 @@
|
||||
- [X] Specular reflections
|
||||
- [X] Transmission
|
||||
- [ ] Scene description input files (JSON)
|
||||
- [ ] Indirect illumination
|
||||
- [X] Indirect illumination
|
||||
- [ ] Russian roulette
|
||||
- [ ] Image based lightning
|
||||
- [ ] HDR light probes for IBL
|
||||
|
@@ -20,12 +20,19 @@ inline float DirectionalLight::distance(vec3 point) {
|
||||
return numeric_limits<float>::max();
|
||||
}
|
||||
|
||||
vec3 DirectionalLight::shade(vec3 normal, Ray & r, float t, Material & m) const {
|
||||
float n_dot_l, r_dot_l;
|
||||
vec3 color, ref;
|
||||
vec3 DirectionalLight::diffuse(vec3 normal, Ray & r, float t, Material & m) const {
|
||||
float n_dot_l;
|
||||
vec3 color;
|
||||
|
||||
n_dot_l = max(dot(normal, m_position), 0.0f);
|
||||
color += (m.m_diffuse / pi<float>()) * m_diffuse * n_dot_l;
|
||||
color += m_diffuse * n_dot_l;
|
||||
|
||||
return color;
|
||||
}
|
||||
|
||||
vec3 DirectionalLight::specular(vec3 normal, Ray & r, float t, Material & m) const {
|
||||
float r_dot_l;
|
||||
vec3 color, ref;
|
||||
|
||||
ref = reflect(m_position, normal);
|
||||
r_dot_l = pow(max(dot(ref, r.m_direction), 0.0f), m.m_shininess);
|
||||
|
@@ -20,7 +20,8 @@ public:
|
||||
|
||||
virtual vec3 direction(vec3 point);
|
||||
virtual float distance(vec3 point);
|
||||
virtual vec3 shade(vec3 normal, Ray & r, float t, Material & m) const;
|
||||
virtual vec3 diffuse(vec3 normal, Ray & r, float t, Material & m) const;
|
||||
virtual vec3 specular(vec3 normal, Ray & r, float t, Material & m) const;
|
||||
};
|
||||
|
||||
#endif
|
||||
|
@@ -19,7 +19,8 @@ public:
|
||||
|
||||
virtual vec3 direction(vec3 point) = 0;
|
||||
virtual float distance(vec3 point) = 0;
|
||||
virtual vec3 shade(vec3 normal, Ray & r, float t, Material & m) const = 0;
|
||||
virtual vec3 diffuse(vec3 normal, Ray & r, float t, Material & m) const = 0;
|
||||
virtual vec3 specular(vec3 normal, Ray & r, float t, Material & m) const = 0;
|
||||
};
|
||||
|
||||
#endif
|
||||
|
50
main.cpp
50
main.cpp
@@ -97,7 +97,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
scene_2(figures, lights, i_model_view);
|
||||
|
||||
tracer = Tracer(g_h, g_w, g_fov);
|
||||
tracer = Tracer(g_h, g_w, g_fov, true);
|
||||
|
||||
total = g_h * g_w * g_samples;
|
||||
|
||||
@@ -137,9 +137,9 @@ int main(int argc, char ** argv) {
|
||||
fprintf(out, "P6 %d %d %d ", g_w, g_h, 255);
|
||||
for (int i = 0; i < g_h; i++) {
|
||||
for (int j = 0; j < g_w; j++) {
|
||||
fputc(static_cast<int>(image[i][j].r * 255.0f), out);
|
||||
fputc(static_cast<int>(image[i][j].g * 255.0f), out);
|
||||
fputc(static_cast<int>(image[i][j].b * 255.0f), out);
|
||||
fputc(static_cast<int>(pow(image[i][j].r, 1.0f / 2.2f) * 255.0f), out);
|
||||
fputc(static_cast<int>(pow(image[i][j].g, 1.0f / 2.2f) * 255.0f), out);
|
||||
fputc(static_cast<int>(pow(image[i][j].b, 1.0f / 2.2f) * 255.0f), out);
|
||||
}
|
||||
}
|
||||
fclose(out);
|
||||
@@ -229,14 +229,11 @@ static void scene_1(vector<Figure *> & vf, vector<Light *> & vl, mat4x4 & i_mode
|
||||
static void scene_2(vector<Figure *> & vf, vector<Light *> & vl, mat4x4 & i_model_view) {
|
||||
Sphere * s;
|
||||
Plane * p;
|
||||
Disk * d;
|
||||
PointLight * l;
|
||||
|
||||
s = new Sphere(0.2f, 0.0f, -0.75f, 0.25f);
|
||||
s->m_mat.m_diffuse = vec3(0.0f);
|
||||
s->m_mat.m_specular = vec3(0.0f);
|
||||
s->m_mat.m_rho = 0.1f;
|
||||
s->m_mat.m_refract = true;
|
||||
s->m_mat.m_ref_index = 2.33f;
|
||||
s->m_mat.m_diffuse = vec3(1.0f);
|
||||
vf.push_back(static_cast<Figure *>(s));
|
||||
|
||||
p = new Plane(vec3(0.0f, -1.0f, 0.0f), vec3(0.0f, 1.0f, 0.0f));
|
||||
@@ -259,15 +256,38 @@ static void scene_2(vector<Figure *> & vf, vector<Light *> & vl, mat4x4 & i_mode
|
||||
p->m_mat.m_diffuse = vec3(1.0f, 0.0f, 1.0f);
|
||||
vf.push_back(static_cast<Figure *>(p));
|
||||
|
||||
p = new Plane(vec3(0.0f, 0.0f, 0.1f), vec3(0.0f, 0.0f, -1.0f));
|
||||
p = new Plane(vec3(0.0f, 0.0f, 1.1f), vec3(0.0f, 0.0f, -1.0f));
|
||||
p->m_mat.m_diffuse = vec3(1.0f, 1.0f, 1.0f);
|
||||
vf.push_back(static_cast<Figure *>(p));
|
||||
|
||||
s = new Sphere(-0.4f, -0.5f, -1.5f, 0.5f);
|
||||
s = new Sphere(-0.5f, -0.5f, -1.5f, 0.5f);
|
||||
s->m_mat.m_diffuse = vec3(1.0f, 1.0f, 0.0f);
|
||||
s->m_mat.m_rho = 0.9f;
|
||||
vf.push_back(static_cast<Figure *>(s));
|
||||
|
||||
s = new Sphere(-0.5f, -0.5f, 0.6f, 0.5f);
|
||||
s->m_mat.m_diffuse = vec3(1.0f, 1.0f, 0.0f);
|
||||
s->m_mat.m_rho = 0.1f;
|
||||
s->m_mat.m_refract = true;
|
||||
s->m_mat.m_ref_index = 1.33f;
|
||||
vf.push_back(static_cast<Figure *>(s));
|
||||
|
||||
d = new Disk(vec3(-0.25f, 1.0f, -1.0f), vec3(1.0f, 0.0f, 0.0f), 0.25f);
|
||||
d->m_mat.m_diffuse = vec3(1.0f);
|
||||
vf.push_back(static_cast<Figure *>(d));
|
||||
|
||||
d = new Disk(vec3(0.25f, 1.0f, -1.0f), vec3(-1.0f, 0.0f, 0.0f), 0.25f);
|
||||
d->m_mat.m_diffuse = vec3(1.0f);
|
||||
vf.push_back(static_cast<Figure *>(d));
|
||||
|
||||
d = new Disk(vec3(0.0f, 1.0f, -1.25f), vec3(0.0f, 0.0f, 1.0f), 0.25f);
|
||||
d->m_mat.m_diffuse = vec3(1.0f);
|
||||
vf.push_back(static_cast<Figure *>(d));
|
||||
|
||||
d = new Disk(vec3(0.0f, 1.0f, -0.75f), vec3(0.0f, 0.0f, -1.0f), 0.25f);
|
||||
d->m_mat.m_diffuse = vec3(1.0f);
|
||||
vf.push_back(static_cast<Figure *>(d));
|
||||
|
||||
l = new PointLight();
|
||||
l->m_position = vec3(0.0f, 0.9f, -1.0f);
|
||||
l->m_diffuse = vec3(1.0f);
|
||||
@@ -302,7 +322,7 @@ static void scene_3(vector<Figure *> & vf, vector<Light *> & vl, mat4x4 & i_mode
|
||||
|
||||
s = new Sphere(2.0f, 0.0f, -2.0f, 1.0f);
|
||||
s->m_mat.m_diffuse = vec3(1.0f, 0.0f, 1.0f);
|
||||
s->m_mat.m_rho = 0.6f;
|
||||
s->m_mat.m_rho = 1.0f;
|
||||
vf.push_back(static_cast<Figure *>(s));
|
||||
|
||||
s = new Sphere(-1.0f, 0.25f, -3.25f, 1.0f);
|
||||
@@ -311,13 +331,13 @@ static void scene_3(vector<Figure *> & vf, vector<Light *> & vl, mat4x4 & i_mode
|
||||
vf.push_back(static_cast<Figure *>(s));
|
||||
|
||||
p = new Plane(vec3(0.0f, -1.5f, 0.0f), vec3(0.0f, 1.0f, 0.0f));
|
||||
p->m_mat.m_diffuse = vec3(1.0f, 1.0f, 1.0f);
|
||||
p->m_mat.m_diffuse = vec3(1.0f);
|
||||
p->m_mat.m_specular = vec3(0.0f);
|
||||
vf.push_back(static_cast<Figure *>(p));
|
||||
|
||||
l = new DirectionalLight();
|
||||
l->m_position = normalize(vec3(-1.0f, 1.0f, -1.0f));
|
||||
l->m_diffuse = vec3(0.0f, 1.0f, 0.0f);
|
||||
l->m_diffuse = vec3(1.0f, 1.0f, 1.0f);
|
||||
l->m_specular = vec3(0.0f, 1.0f, 0.0f);
|
||||
vl.push_back(static_cast<Light *>(l));
|
||||
|
||||
@@ -334,7 +354,7 @@ static void scene_3(vector<Figure *> & vf, vector<Light *> & vl, mat4x4 & i_mode
|
||||
vl.push_back(static_cast<Light *>(l));
|
||||
|
||||
l = new DirectionalLight();
|
||||
l->m_position = normalize(vec3(0.0f, 1.0f, 0.0f));
|
||||
l->m_position = normalize(vec3(1.0f, 0.0f, 1.0f));
|
||||
l->m_diffuse = vec3(0.5f);
|
||||
vl.push_back(static_cast<Light *>(l));
|
||||
|
||||
|
@@ -14,8 +14,10 @@ public:
|
||||
float m_shininess;
|
||||
float m_ref_index;
|
||||
bool m_refract;
|
||||
float kd;
|
||||
float ks;
|
||||
|
||||
Material(): m_diffuse(vec3(1.0f)), m_specular(vec3(1.0f)), m_rho(0.0f), m_shininess(89.0f), m_ref_index(1.0f), m_refract(false) { }
|
||||
Material(): m_diffuse(vec3(1.0f)), m_specular(vec3(1.0f)), m_rho(0.0f), m_shininess(89.0f), m_ref_index(1.0f), m_refract(false), kd(0.4f), ks(0.4f) { }
|
||||
|
||||
Material(const Material & m) {
|
||||
m_diffuse = m.m_diffuse;
|
||||
|
59217
output.ppm
59217
output.ppm
File diff suppressed because one or more lines are too long
@@ -19,8 +19,8 @@ inline float PointLight::distance(vec3 point) {
|
||||
return length(m_position - point);
|
||||
}
|
||||
|
||||
vec3 PointLight::shade(vec3 normal, Ray & r, float t, Material & m) const {
|
||||
float d, att, n_dot_l, r_dot_l;
|
||||
vec3 PointLight::diffuse(vec3 normal, Ray & r, float t, Material & m) const {
|
||||
float d, att, n_dot_l;
|
||||
vec3 color, i_pos, l_dir, ref;
|
||||
|
||||
i_pos = r.m_origin + t * r.m_direction;
|
||||
@@ -30,7 +30,20 @@ vec3 PointLight::shade(vec3 normal, Ray & r, float t, Material & m) const {
|
||||
att = 1.0f / (m_const_att + (m_lin_att * d) + (m_quad_att * (d * d)));
|
||||
|
||||
n_dot_l = max(dot(normal, l_dir), 0.0f);
|
||||
color += att * (m.m_diffuse / pi<float>()) * m_diffuse * n_dot_l;
|
||||
color += att * m_diffuse * n_dot_l;
|
||||
|
||||
return color;
|
||||
}
|
||||
|
||||
vec3 PointLight::specular(vec3 normal, Ray & r, float t, Material & m) const {
|
||||
float d, att, r_dot_l;
|
||||
vec3 color, i_pos, l_dir, ref;
|
||||
|
||||
i_pos = r.m_origin + t * r.m_direction;
|
||||
l_dir = m_position - i_pos;
|
||||
d = length(l_dir);
|
||||
l_dir = normalize(l_dir);
|
||||
att = 1.0f / (m_const_att + (m_lin_att * d) + (m_quad_att * (d * d)));
|
||||
|
||||
ref = reflect(l_dir, normal);
|
||||
r_dot_l = pow(max(dot(ref, r.m_direction), 0.0f), m.m_shininess);
|
||||
|
@@ -24,7 +24,8 @@ public:
|
||||
|
||||
virtual vec3 direction(vec3 point);
|
||||
virtual float distance(vec3 point);
|
||||
virtual vec3 shade(vec3 normal, Ray & r, float t, Material & m) const;
|
||||
virtual vec3 diffuse(vec3 normal, Ray & r, float t, Material & m) const;
|
||||
virtual vec3 specular(vec3 normal, Ray & r, float t, Material & m) const;
|
||||
};
|
||||
|
||||
#endif
|
||||
|
128
tracer.cpp
128
tracer.cpp
@@ -2,24 +2,19 @@
|
||||
#include <limits>
|
||||
#include <cstdlib>
|
||||
|
||||
#include <glm/gtc/constants.hpp>
|
||||
|
||||
#include "tracer.hpp"
|
||||
|
||||
#define MAX_RECURSION 9
|
||||
#define MAX_RECURSION 3
|
||||
#define BIAS 0.000001f
|
||||
|
||||
using namespace std;
|
||||
|
||||
using std::numeric_limits;
|
||||
using glm::normalize;
|
||||
using glm::radians;
|
||||
using glm::dot;
|
||||
using glm::reflect;
|
||||
using glm::refract;
|
||||
using glm::clamp;
|
||||
using glm::tan;
|
||||
using glm::sqrt;
|
||||
using namespace glm;
|
||||
|
||||
static const vec3 BCKG_COLOR = vec3(0.16f, 0.66f, 0.72f);
|
||||
static const vec3 BCKG_COLOR = vec3(0.0f);
|
||||
|
||||
static inline float random01() {
|
||||
return static_cast<float>(rand()) / static_cast<float>(RAND_MAX);
|
||||
@@ -56,14 +51,15 @@ vec2 Tracer::sample_pixel(int i, int j) const {
|
||||
vec3 Tracer::trace_ray(Ray & r, vector<Figure *> & v_figures, vector<Light *> & v_lights, unsigned int rec_level) const {
|
||||
float t, _t;
|
||||
Figure * _f;
|
||||
vec3 n, color, i_pos, ref;
|
||||
vec3 n, color, i_pos, ref, sample, dir_diff_color, dir_spec_color, ind_color;
|
||||
Ray mv_r, sr, rr;
|
||||
bool vis;
|
||||
float kr;
|
||||
float kr, r1, r2;
|
||||
|
||||
t = numeric_limits<float>::max();
|
||||
_f = NULL;
|
||||
|
||||
// Find the closest intersecting surface.
|
||||
for (size_t f = 0; f < v_figures.size(); f++) {
|
||||
if (v_figures[f]->intersect(r, _t) && _t < t) {
|
||||
t = _t;
|
||||
@@ -71,45 +67,99 @@ vec3 Tracer::trace_ray(Ray & r, vector<Figure *> & v_figures, vector<Light *> &
|
||||
}
|
||||
}
|
||||
|
||||
// If this ray intersects something:
|
||||
if (_f != NULL) {
|
||||
// Take the intersection point and the normal of the surface at that point.
|
||||
i_pos = r.m_origin + (t * r.m_direction);
|
||||
n = _f->normal_at_int(r, t);
|
||||
|
||||
for (size_t l = 0; l < v_lights.size(); l++) {
|
||||
vis = true;
|
||||
sr = Ray(v_lights[l]->direction(i_pos), i_pos + n * BIAS);
|
||||
// Check if the material is not reflective/refractive.
|
||||
if( !_f->m_mat.m_refract && _f->m_mat.m_rho == 0.0f) {
|
||||
// Calculate the direct lighting.
|
||||
for (size_t l = 0; l < v_lights.size(); l++) {
|
||||
// For every light source
|
||||
vis = true;
|
||||
|
||||
for (size_t f = 0; f < v_figures.size(); f++) {
|
||||
if (v_figures[f]->intersect(sr, _t) && _t < v_lights[l]->distance(i_pos)) {
|
||||
vis = false;
|
||||
break;
|
||||
// Cast a shadow ray to determine visibility.
|
||||
sr = Ray(v_lights[l]->direction(i_pos), i_pos + n * BIAS);
|
||||
for (size_t f = 0; f < v_figures.size(); f++) {
|
||||
if (v_figures[f]->intersect(sr, _t) && _t < v_lights[l]->distance(i_pos)) {
|
||||
vis = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Evaluate the shading model accounting for visibility.
|
||||
dir_diff_color += (vis ? 1.0f : 0.0f) * v_lights[l]->diffuse(n, r, t, _f->m_mat);
|
||||
dir_spec_color += (vis ? 1.0f : 0.0f) * v_lights[l]->specular(n, r, t, _f->m_mat);
|
||||
}
|
||||
|
||||
color += (vis ? 1.0f : 0.0f) * v_lights[l]->shade(n, r, t, _f->m_mat);
|
||||
// If enabled, calculate indirect lighting contribution.
|
||||
if (indirect_l && rec_level < MAX_RECURSION) {
|
||||
r1 = random01();
|
||||
r2 = random01();
|
||||
sample = sample_hemisphere(r1, r2);
|
||||
rotate_sample(sample, n);
|
||||
rr = Ray(normalize(sample), i_pos + (sample * BIAS));
|
||||
ind_color += r1 * trace_ray(rr, v_figures, v_lights, rec_level + 1) / (1.0f / (2.0f * pi<float>()));
|
||||
}
|
||||
|
||||
color += ((dir_diff_color + ind_color) * (_f->m_mat.m_diffuse / pi<float>())) + dir_spec_color;
|
||||
|
||||
} else {
|
||||
// If the material has reflection/transmission enabled.
|
||||
// Calculate the Fresnel term if the surface is refracting.
|
||||
if (_f->m_mat.m_refract)
|
||||
kr = fresnel(r.m_direction, n, r.m_ref_index, _f->m_mat.m_ref_index);
|
||||
else
|
||||
kr = _f->m_mat.m_rho;
|
||||
|
||||
// Determinte the specular reflection color.
|
||||
if (kr > 0.0f && rec_level < MAX_RECURSION) {
|
||||
rr = Ray(normalize(reflect(r.m_direction, n)), i_pos + n * BIAS);
|
||||
color += _f->m_mat.m_rho * kr * trace_ray(rr, v_figures, v_lights, rec_level + 1);
|
||||
} else if (rec_level >= MAX_RECURSION)
|
||||
return vec3(0.0f);
|
||||
|
||||
// Determine the transmission color.
|
||||
if (_f->m_mat.m_refract && kr < 1.0f && rec_level < MAX_RECURSION) {
|
||||
rr = Ray(normalize(refract(r.m_direction, n, r.m_ref_index / _f->m_mat.m_ref_index)), i_pos - n * BIAS, _f->m_mat.m_ref_index);
|
||||
color += (1.0f - _f->m_mat.m_rho) * (1.0f - kr) * trace_ray(rr, v_figures, v_lights, rec_level + 1);
|
||||
} else if (rec_level >= MAX_RECURSION)
|
||||
return vec3(0.0f);
|
||||
|
||||
}
|
||||
|
||||
if (_f->m_mat.m_refract)
|
||||
kr = fresnel(r.m_direction, n, r.m_ref_index, _f->m_mat.m_ref_index);
|
||||
else
|
||||
kr = _f->m_mat.m_rho;
|
||||
|
||||
if (kr > 0.0f && rec_level < MAX_RECURSION) {
|
||||
rr = Ray(normalize(reflect(r.m_direction, n)), i_pos + n * BIAS);
|
||||
color += _f->m_mat.m_rho * kr * trace_ray(rr, v_figures, v_lights, rec_level + 1);
|
||||
|
||||
} else if (rec_level >= MAX_RECURSION)
|
||||
return vec3(BCKG_COLOR);
|
||||
|
||||
if (_f->m_mat.m_refract && kr < 1.0f && rec_level < MAX_RECURSION) {
|
||||
rr = Ray(normalize(refract(r.m_direction, n, r.m_ref_index / _f->m_mat.m_ref_index)), i_pos - n * BIAS, _f->m_mat.m_ref_index);
|
||||
color += (1.0f - _f->m_mat.m_rho) * (1.0f - kr) * trace_ray(rr, v_figures, v_lights, rec_level + 1);
|
||||
|
||||
} else if (rec_level >= MAX_RECURSION)
|
||||
return vec3(BCKG_COLOR);
|
||||
|
||||
// Return final color.
|
||||
return clamp(color, 0.0f, 1.0f);
|
||||
|
||||
} else
|
||||
return vec3(BCKG_COLOR);
|
||||
}
|
||||
|
||||
/* Helper functions pretty much taken from scratchapixel.com */
|
||||
void Tracer::create_coords_system(const vec3 &n, vec3 &nt, vec3 &nb) const {
|
||||
if (abs(n.x) > abs(n.y))
|
||||
nt = normalize(vec3(n.z, 0.0f, -n.x));
|
||||
else
|
||||
nt = normalize(vec3(0.0f, -n.z, n.y));
|
||||
nb = normalize(cross(n, nt));
|
||||
}
|
||||
|
||||
vec3 Tracer::sample_hemisphere(const float r1, const float r2) const {
|
||||
float sin_t = sqrt(1.0f - (r1 * r1));
|
||||
float phi = 2 * pi<float>() * r2;
|
||||
float x = sin_t * cos(phi);
|
||||
float z = sin_t * sin(phi);
|
||||
return vec3(x, r1, z);
|
||||
}
|
||||
|
||||
void Tracer::rotate_sample(vec3 & sample, const vec3 & n) const {
|
||||
vec3 nt, nb;
|
||||
mat3 rot_m;
|
||||
|
||||
create_coords_system(n, nt, nb);
|
||||
sample = vec3(sample.x * nb.x + sample.y * n.x + sample.z * nt.x,
|
||||
sample.x * nb.y + sample.y * n.y + sample.z * nt.y,
|
||||
sample.x * nb.z + sample.y * n.z + sample.z * nt.z);
|
||||
}
|
||||
|
10
tracer.hpp
10
tracer.hpp
@@ -21,15 +21,21 @@ public:
|
||||
int m_w;
|
||||
float m_fov;
|
||||
float m_a_ratio;
|
||||
bool indirect_l;
|
||||
|
||||
Tracer(): m_h(480), m_w(640), m_fov(90.0f), m_a_ratio(640.0f / 480.0f) { }
|
||||
Tracer(): m_h(480), m_w(640), m_fov(90.0f), m_a_ratio(640.0f / 480.0f), indirect_l(false) { }
|
||||
|
||||
Tracer(int h, int w, float fov): m_h(h), m_w(w), m_fov(fov) {
|
||||
Tracer(int h, int w, float fov, bool il): m_h(h), m_w(w), m_fov(fov), indirect_l(il) {
|
||||
m_a_ratio = static_cast<float>(w) / static_cast<float>(h);
|
||||
};
|
||||
|
||||
vec2 sample_pixel(int i, int j) const;
|
||||
vec3 trace_ray(Ray & r, vector<Figure *> & v_figures, vector<Light *> & v_lights, unsigned int rec_level) const;
|
||||
|
||||
private:
|
||||
void create_coords_system(const vec3 &n, vec3 &nt, vec3 &nb) const;
|
||||
vec3 sample_hemisphere(const float r1, const float r2) const;
|
||||
void rotate_sample(vec3 & sample, const vec3 & n) const;
|
||||
};
|
||||
|
||||
#endif
|
||||
|
Reference in New Issue
Block a user